计量经济学三到十章课后习题答案.docx
文本预览下载声明
3.1 +即y=x+
基本假定
(1)解释变量x1,x2...,xp是确定性变量,不是随机变量,且要求rank(X)=p+1n,表明设计矩阵X中自变量列之间不相关,样本量的个数应大于解释变量的个数
随机误差项具有零均值和等方差,即高斯马尔柯夫条件
对于多元线性回归的正态分布假定条件的矩阵模型为
~N(0,) 随即向量y~N(X)
3.2
当存在时,回归参数的最小二乘估计为,要求出回归参数,即要求是一个非奇异矩阵,,所以可逆矩阵为p+1阶的满秩矩阵,又根据两个矩阵乘积的秩不大于每一因子的秩rank(X)p+1,而X为n(p+1)阶矩阵,于是应有np+1
结论说明,要想用最小二乘法估计多元线性回归模型的未知参数,样本量n必须大于模型自变量p的个数。
3.3
3.4不能断定这个方程一定很理想,因为样本决定系数与回归方程中自变量的数目以及样本量n有关,当样本量个数n太小,而自变量又较多,使样本量与自变量的个数接近时,易接近1,其中隐藏一些虚假成分。
3.5当接受H时,认定在给定的显著性水平下,自变量x1,x2,xp对因变量y无显著影响,于是通过x1,x2,xp去推断y也就无多大意义,在这种情况下,一方面可能这个问题本来应该用非线性模型去描述,而误用了线性模型,使得自变量对因变量无显著影响;另一方面可能是在考虑自变量时,把影响因变量y的自变量漏掉了,可以重新考虑建模问题。
当拒绝H时,我们也不能过于相信这个检验,认为这个回归模型已经完美了,当拒绝H时,我们只能认为这个模型在一定程度上说明了自变量x1,x2,xp与自变量y的线性关系,这时仍不能排除排除我们漏掉了一些重要的自变量。
3.6中心化经验回归方程的常数项为0,回归方程只包含p个参数估计值比一般的经验回归方程减少了一个未知参数,在变量较多时,减少一个未知参数,计算的工作量会减少许多,对手工计算尤为重要。
在用多元线性回归方程描述某种经济现象时,由于自变量所用的单位大都不同,数据的大小差异也往往很大,这就不利于在同一标准上进行比较,为了消除量纲不同和数量级的差异带来的影响,就需要将样本数据标准化处理,然后用最小二乘法估计未知参数,求得标准化回归系数。
3.7
对进??中心化处理得再将等式除以因变量的样本标准差则有==
所以
3.8 (为相关阵()第i行,第j列的代数余子式)
=
3.9
F=小于1,F与一一对应,所以F与等价
3.10
证得
3.11
(1)
相关性yx1x2x3yPearson 相关性1.556.731*.724*显著性(双侧).095.016.018N10101010x1Pearson 相关性.5561.113.398显著性(双侧).095.756.254N10101010x2Pearson 相关性.731*.1131.547显著性(双侧).016.756.101N10101010x3Pearson 相关性.724*.398.5471显著性(双侧).018.254.101N10101010*. 在 0.05 水平(双侧)上显著相关。
(2)(3)(4)(5)(6)
模型汇总模型RR 方调整 R 方标准 估计的误差1.898a.806.70823.44188a. 预测变量: (常量), x3, x1, x2。
Anovab模型平方和df均方FSig.1回归13655.37034551.7908.283.015a残差3297.1306549.522总计16952.5009a. 预测变量: (常量), x3, x1, x2。
b. 因变量: y
系数a模型非标准化系数标准系数tSig.B标准 误差试用版1(常量)-348.280176.459-1.974.096x13.7541.933.3851.942.100x27.1012.880.5352.465.049x312.44710.569.2771.178.284a. 因变量: y
1回归方程为 y= -348.280+3.754x1+7.101x2+12.447x3
2复相关系数R=0.898,决定系数为0.806,拟合度较高。
3方差分析表,F=8.283,P值=0.0150.05,表明回归方程高度显著,说明x1,x2,x3,整体上对y有
显示全部