文档详情

功率谱密度估计方法的MATLAB实现..doc

发布:2016-12-27约4.54千字共13页下载文档
文本预览下载声明
功率谱密度估计方法的MATLAB实现 在应用数学和物理学中,谱密度、功率谱密度和能量谱密度是一个用于信号的通用概念,它表示每赫兹的功率、每赫兹的能量这样的物理量纲。在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。信号功率谱的概念和应用是电子工程的基础,尤其是在电子通信系统中,例如无线电和微波通信、雷达以及相关系统。因此学习如何进行功率谱密度估计十分重要,借助于Matlab工具可以谱估计的模拟仿真并输出结果。下面进行设计及仿真并给出仿真结果。 程序运行平台Matlab R2015a(197613) 周期图法谱估计程序 源程序 n=0:N-1; t=n/Fs; xn=sin(2000*2*pi*t); %正弦波,f=2000Hz Y=awgn(xn,10); %加入信噪比为10db的高斯白噪声 subplot(2,1,1); plot(n,Y) title(信号) xlabel(时间);ylabel(幅度); grid on; window=boxcar(length(xn)); %矩形窗 nfft=N/4; %采样点数 [Pxx f]=periodogram(Y,window,nfft,Fs); %直接法 subplot(2,1,2); plot(f,10*log10(Pxx)); grid on; title([周期图法谱估计,,int2str(N),点]); xlabel(频率(Hz));ylabel(功率谱密度); 仿真结果 1、源程序n=0:N-1; t=n/Fs; xn=sin(2000*2*pi*t); %正弦波,f=2000Hz Y=awgn(xn,10); %加入信噪比为10db的高斯白噪声 subplot(2,1,1);subplot(2,1,1); plot(n,Y) title(信号) xlabel(时间);ylabel(幅度); grid on; window=hamming(M); %汉明窗 [Pxx f]=pwelch(Y,window,10,256,Fs); subplot(2,1,2); plot(f,10*log10(Pxx)); grid on; title([修正周期图法谱估计 N=,int2str(N), M=,int2str(M)]); xlabel(频率(Hz));ylabel(功率谱密度); 仿真结果 1、源程序n=1:N; s=sin(2*pi*f1*n/fs)+sin(2*pi*f2*n/fs); %s为原始信号 x=awgn(s,10); %x为观测信号,即对原始信号加入白噪声,信噪比10dB figure(1); %画出原始信号和观测信号 subplot(2,1,1); plot(s,b),xlabel(时间),ylabel(幅度),title(原始信号s); grid; subplot(2,1,2); plot(x,r),xlabel(时间),ylabel(幅度),title(观测信号x); [Pxx1,f]=pmem(x,P,N,fs); %最大熵谱估计 figure(2); plot(f,10*log10(Pxx1)); xlabel(频率(Hz) );ylabel(功率谱(dB) ); title([最大熵法谱估计 模型阶数P=,int2str(P), 数据长度N=,int2str(N)]); 仿真结果 Levinson递推法谱估计程序 源程序 n=1:N; s=sin(2*pi*f1*n/fs)+sin(2*pi*f2*n/fs);%s为原始信号 x=awgn(s,10);%x为观测信号,即对原始信号加入白噪声,信噪比10dB figure(1); %画出原始信号和观测信号 subplot(2,1,1); plot(s,b),axis([0 100 -3 3]),xlabel(时间),ylabel(幅度),title(原始信号s);
显示全部
相似文档