数据挖掘概念复习教程.doc
文本预览下载声明
PAGE
PAGE 9
数据挖掘:是从大量数据中发现有趣(非平凡的、隐含的、先前未知、潜在有用)模式,这些数据可以存放在数据库,数据仓库或其他信息存储中。
挖掘流程:
(1)学习应用域(2)目标数据创建集(3)数据清洗和预处理(4)数据规约和转换(5)选择数据挖掘函数(总结、分类、回归、关联、分类)(6)选择挖掘算法(7)找寻兴趣度模式(8)模式评估和知识展示(9)使用挖掘的知识
概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过(1)数据特征化:目标类数据的一般特性或特征的汇总;(2)数据区分:将目标类数据的一般特性与一个或多个可比较类进行比较;(3)数据特征化和比较来得到。
关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件,通常要满足最小支持度阈值和最小置信度阈值。
分类:找出能够描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、模糊集)。
预测:建立连续值函数模型,预测空缺的或不知道的数值数据集。
孤立点:与数据的一般行为或模型不一致的数据对象。
聚类:分析数据对象,而不考虑已知的类标记。训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或分组,从而产生类标号。
第二章数据仓库
数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。从一个或多个数据源收集信息,存放在一个一致的模式下,并且通常驻留在单个站点。数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。 面向主题:排除无用数据,提供特定主题的简明视图。集成的:多个异构数据源。时变的:从历史角度提供信息,隐含时间信息。非易失的:和操作数据的分离,只提供初始装入和访问。
联机事务处理OLTP:主要任务是执行联机事务和查询处理。
联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或‘知识工人’提供服务。这种系统可以用不同的格式和组织提供数据。OLAP是一种分析技术,具有汇总、合并和聚集功能,以及从不同的角度观察信息的能力。
特征特征面向用户功能DB数据访问OLTP操作处理事务DBA,办事员日常操作基于ER当前最新读/写OLAP信息处理分析知识工人决策支持星型,雪花时间跨度读特征汇总用户操作访问记录优先DB规模度量OLTP原始,详细数千主码索引数十个高性能可用100mb-gb事务OLAP汇总,统一数百大量扫描数百万高灵活100gb-tb查询
多维数据模型:
多维数据模型将数据看作数据立方体,允许从多个维度对数据建模和观察。包含维表和事实表。
最流行的数据仓库数据模型是多维数据模型,这种模型可以是星形模式(事实表在中间,连接到多个维表)、雪花模式(星型的变种,某些维表规范化,分解到附加维表,以减少冗余)、事实星座模式(多个事实表共享维表)。
数据立方体:允许从多维对数据建模和观察。它由维和事实定义。维:关于一个组织想要保存记录的透视图和实体,每个维都有一个表与之相关联,成为维表。事实表:包括事实的名称和度量,以及每个相关维表的码。
方体Cuboid:每个数据立方体。基本方体Base Cuboid:存放最底层汇总。顶点方体Apex Cuboid:最高层汇总,all。数据立方体Data Cube:给定维的集合,可以对维的每个可能子集产生一个方体。结果成为方体的格。
多维数据立方体:提供数据的多维视图,并允许预计算和快速访问汇总数据。
度量:数值函数,通过对给定点的各维-值对聚集数据,计算该点的度量值。
概念分层:映射序列,将底层概念映射到更一般的较高层概念。
OLAP操作:
上卷:上卷操作通过一个维的概念分层向上攀升或者通过维规约,在数据立方体上进行聚集。
下钻:下钻是上卷的逆操作,它由不太详细的数据到
显示全部