文档详情

数据结构实验三实验报告教程.docx

发布:2017-04-28约4.84千字共14页下载文档
文本预览下载声明
三题目:哈夫曼编/译码器 班级: 姓名: 学号: 完成日期:15.11.14 一、题目要求 描述: 写一个哈夫曼码的编/译码系统,要求能对要传输的报文进行编码和解码。构造哈夫曼树时,权值小的放左子树,权值大的放右子树,编码时右子树编码为1,左子树编码为0. 输入: 输入表示字符集大小为n(n = 100)的正整数,以及n个字符和n个权值(正整数,值越大表示该字符出现的概率越大); 输入串长小于或等于100的目标报文。 输出: 经过编码后的二进制码,占一行; 以及对应解码后的报文,占一行; 最后输出一个回车符。 输入样例: 5 a b c d e 12 40 15 8 25 bbbaddeccbbb 输出样例: 00011111110111010110110000 bbbaddeccbbb 提示: 利用编码前缀性质。 二、概要设计 1.设计需要的数据结构:树型结构 2.需要的抽象数据类型: ADT Tree{ 数据对象D:D是具有相同特性的数据元素的集合。 数据关系R:若D为空集,则称为空树; 若D仅含有一个数据元素,则R为空集,否则R={H},H是如下二元关系: (1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱; (2) 若D-{root}≠NULL,则存在D-{root}的一个划分D1,D2,D3,?,Dm(m0),对于任意j≠k(≤j,k≤m)有Dj∩Dk=NULL,且对任意的i(1≤i≤m),唯一存在数据元素xi∈Di有root,xi∈H; (3) 对应于D-{root}的划分,H-{root,xi,?,root,xm}有唯一的一个划分H1,H2,?,Hm(m0), 对任意j≠k(1≤j,k≤m)有Hj∩Hk=NULL,且对任意i(1≤i≤m),Hi是Di上的二元关系,(Di,{Hi}) 是一棵符合本定义的树,称为根root的子树。 基本操作: InitTree(T); 操作结果:构造空树T。 DestroyTree(T); 初始条件:树T存在。 操作结果:销毁树T。 CreateTree(T,definition); 初始条件:definition给出树T的定义。 操作结果:按definition构造树T。 } 三、详细设计 算法设计 1.设计一个存储数据的数组结构体 typedef struct{ char cd[200];//最大的数据 int start; }HuffmanCode; 2.设计一个结构体数组:在表示哈夫曼树时,用如下的结构体保存哈夫曼树中个结构体的信息,根据二叉树的性质可知,具有N个节点的哈夫曼树共有2n-1个节点。 typedef struct{ int weight; char data; unsigned int parent, lchild, rchild; }HTNode, *HuffmanTree; 3.设置全局变量 HTNode ht[2*200]; HuffmanCode hcd[200],d; int i, k, f, l, r, n, c, s1, s2; char a; 4.创建输入函数 void creatsz() { for(i=1;i=n;i++) { cinht[i].data;//输入数据 } for(i=1;i=n;i++) { cinht[i].weight;//输入数据的权重 } } 5.创建构造哈夫曼树的伪代码算法 void creattree() { for(i=n+1;i=2*n-1;i++) { s1=s2=100000; l=r=0; for(k=1;k=i-1;k++)//建立哈夫曼树 { if(ht[k].parent==0) { if(ht[k].weights1) { s2=s1; r=l; s1=ht[k].weight; l=k; } else if(ht[k].weights2) { s2=ht[k].weight; r=k; } } } ht[l].parent=i; ht[r].parent=i; ht[i].weight=ht[l].weight+ht[r].weight; ht[i].lchild=l; ht[i].rchild=r; } 6.创建构造哈夫曼编码的伪代码算法 void creatlist() { for(i=1;i=n;i++)//逐个字符求哈夫曼编码 { d.start=n+1;//编码结束位置
显示全部
相似文档