文档详情

第3章塑性加工过程的组织性能变化.ppt

发布:2017-05-29约6.59千字共54页下载文档
文本预览下载声明
第3章??塑性加工过程的组织性能变化 §3.1 塑性加工中金属的组织与性能 §3.2 金属塑性变形的温度——速度效应 §3.3 形变热处理 §3. 1 塑性加工中金属的组织与性能 3. 1. 1 冷变形 3. 1. 2 热变形 3. 1. 3 塑性变形对固态相变的影响 3. 1. 1 冷变形 1.冷变形的概念 2.冷变形时金属显微组织的变化 3.冷变形时金属性能的变化 1. 冷变形的概念 变形温度低于回复温度,在变形中只有加工硬化作用而无回复与再结晶现象,通常把这种变形称为冷变形或冷加工。冷变形时金属的变形抗力较高,且随着所承受的变形程度的增加而持续上升,金属的塑性则随着变形程度的增加而逐渐下降,表现出明显的硬化现象。 2.冷变形时金属显微组织的变化 (1)纤维组织 多晶体金属经冷变形后,原来等轴的晶粒沿着主变形的方向被拉长。变形量越大,拉长的越显著。当变形量很大时,各个晶粒已不能很清楚地辨别开来,呈现纤维状,故称纤维组织。被拉长的程度取决于主变形图和变形程度。 (2)亚结构 随着冷变形的进行,位错密度迅速提高。经强烈冷变形后,可由原来退火状态的106~107/cm2增至1011~1012/cm2。经透射电子显微镜观察,这些位错在变形晶粒中的分布是很不均匀的。只有在变形量比较小或者在层错能低的金属中,由于位错难以产生交滑移和攀移,在位错可动性差的情况下,位错的分布才是比较分散和比较均匀的。在变形量大而且层错能较高的金属中,位错的分布是很不均匀的。纷乱的位错纠结起来,形成位错缠结的高位错密度区(约比平均位错密度高五倍),将位错密度低的部分分隔开来,好像在一个晶粒的内部又出现许多“小晶粒”似的,只是它们的取向差不大(几度到几分),这种结构称为亚结构。 (3)变形织构 多晶体塑性变形时,各个晶粒滑移的同时,也伴随着晶体取向相对于外力有规律的转动,使取向大体趋于一致叫做“择优取向”。具有择优取向的物体,其组织称为“变形织构”。 金属及合金经过挤压、拉拔、锻造和轧制以后,都会产生变形织构。塑性加工方式不同,可出现不同类型的织构。通常,变形织构可分为丝织构和板织构。 (4)晶内及晶间的破坏 在冷变形过程中不发生软化过程的愈合作用,因滑移(位错的运动及其受阻、双滑移、交叉滑移等),双晶等过程的复杂作用以及各晶粒所产生的相对转动与移动,造成了在晶粒内部及晶粒间界处出现一些显微裂纹、空洞等缺陷使金属密度减少,是造成金属显微裂纹的根源。 3. 冷变形时金属性能的变化 (1)物化性能 a. 密度 金属经冷变形后,晶内及晶冷变形后密度降至8. 886克/厘米3。相应的铜的密度是由8. 905克/厘米3,降至8. 89克/厘米3。 b. 电阻 晶间物质的破坏使晶粒直接接触、晶粒位向有序化、间出现了显微裂纹、裂口、空洞等缺陷致使金属的密度降低,电阻增大。 c. 化学稳定性 冷变形后,金属的残余应力和内能增加,从而使化学不稳定性增加,耐蚀性能降低。 除此之外,冷变形还可能改变磁性。如锌和铜,冷变形后可减少其抗磁性。高度冷加工后,铜可以变为顺磁性的金属,对顺磁性金属冷变形会降低磁化敏感性等等。 (2)力学性能 由于发生了晶内及晶间破坏,晶格产生了畸变以及出现第二、三类残余应力等,故经受冷变形后的金属及合金,其塑性指标随所承受的变形程度的增加而下降,在极限情况下可达到接近于完全脆性的状态。另外,由于晶格畸变、出现应力、晶粒的长大、细化以及出现亚结构等,金属的抗力指标则随变形程度的增加而提高。金属力学性能与变形程度的曲线称硬化曲线。 (3)织构与各向异性 金属材料经塑性变形以后,在不同加工方式下,会出现不同类型的织构。由于织构的存在而使金属呈现各向异性。 冷变形强化(加工硬化) 3. 1. 2 热变形 1.热变形的概念 2.热变形对金属组织性能的影响 3.热变形过程中的回复与再结晶 1. 热变形的概念 所谓热变形(又称热加工)是指变形金属在完全再结晶条件下进行的塑性变形。一般在热变形时金属所处温度范围是其熔点绝对温度的0. 75~0. 95倍,在变形过程中,同时产生软化与硬化,且软化进行的很充分,变形后的产品无硬化的痕迹。 与其它加工方法相比,如冷加工,具有自己一系列的优点,诸如: (1)金属在热加工变形时,变形抗力较低,消耗能量较少。 (2)金属在热加工变形时,其塑性升高,产生断裂的倾向性减小。 (3)与冷加工相比较,热加工变形一般不易产生织构。 (4)在生产过程中,不需要像冷加工那样的中间退火,从而可使生产工序简化,生产效率提高。 (5)热加工变形
显示全部
相似文档