模拟电路数字电路讲义.doc
文本预览下载声明
三极管放大电路的组成原理
一、放大电路的组成与各元件的作用
Rb和Rc:提供适合偏置--发射结正偏,集电结反偏。C1、C2是隔直(耦合)电容,隔直流通交流。
共射放大电路
Vs ,Rs:信号源电压与内阻; RL:负载电阻,将集电极电流的变化ic转换为集电极与发射极间的电压变化VCE
二、放大电路的基本工作原理
静态(Vi=0,假设工作在放大状态) 分析,又称直流分析,计算三极管的电流和极间电压值,应采用直流通路(电容开路)。
基极电流:IB=IBQ=(VCC-VBEQ)/Rb
集电极电流:IC=ICQ=βIBQ
集-射间电压:VCE=VCEQ=VCC-ICQRc
动态(vi≠0)分析:
,,
,,其中。
放大电路对信号的放大作用是利用三极管的电流控制作用来实现 ,其实质上是一种能量转换器。
三、构成放大电路的基本原则
放大电路必须有合适的静态工作点:直流电源的极性与三极管的类型相配合,电阻的设置要与电源相配合,以确保器件工作在放大区。输入信号能有效地加到放大器件的输入端,使三极管输入端的电流或电压跟随输入信号成比例变化,经三极管放大后的输出信号(如ic=β*ib)应能有效地转变为负载上的输出电压信号。
电压传输特性和静态工作点
一、单管放大电路的电压传输特性
图解分析法:
输出回路方程:
输出特性曲线:
AB段:截止区,对应于输出特性曲线中iB<0的部分。
BCDEFG段:放大区
GHI段:饱和区
作为放大应用时:Q点应置于E处(放大区中心)。若Q点设置C处,易引起载止失真。若Q点设置F处,易引起饱和失真。
用于开关控制场合:工作在截止区和饱和区上
二、单管放大电路静态工作点(公式法计算)
单电源固定偏置电路:选择合适的Rb,Rc,使电路工作在放大状态。
工作点稳定的偏置电路:该方法为近似估算法。
分压式偏置电路:
稳定工作点的另一种解释:温度T↑→IC↑→IE↑→VE↑(=IERe)↓(VB固定) ,则 IC↓ IB↓ VBE↓ (=VB-VE)。
在静态情况下,温度上升引起IC增加,由于基极电位VB基本固定,该电流增量通过Re产生负反馈,迫使IC自动下降,使Q点保持稳定。Re愈大,负反馈作用愈强,稳定性也愈好。但Re过大,输出的动态范围(ΔVCE)变小,易引起失真。Rb1、Rb2愈小,VB愈稳定。但它们过小将使放大能力下降。工程设计时,应综合考虑电阻阻值的影响。经验公式:I1=(5~10)IBQ,VEQ=IEQRe=0.2VCC(或VEQ=1~3V)。
三极管的放大与开关应用举例
一、用作放大器
第一步:进行静态分析,求静态工作点; 第二步:动态分析,求放大倍数等动态值;
下面用作图法进行分析:
静态分析(Vi=0时)求。
方法:写出输入回路负载方程,将方程作在输入特性曲线上,求得:,
写出输出回路负载方程
并将它作在输出特性曲线上,负载线与IBQ对应的输出特性相交于Q点,求得:
动态分析(加入Vi后),先由输入特性求基极电流变化量ib:
由输出特性曲线与iC求VCE:
二、用作可控开关(或反相器)
VI=0:三极管截止, iC=0,VO=20V;VI=3V:三极管饱和导电。
逻辑函数化简
一、逻辑函数化简的意义
逻辑函数的化简就是使一个最初的逻辑函数经过化简后得到式中的“与”项,“或”项项数最少,而每项中的变量数也最少。从而使组成的逻辑电路最简(逻辑门数和每门的输入端数最少)。
二、逻辑函数的代数法化简
代数法是利用逻辑代数工具来达到使式子简化的目的。化简依据:逻辑代数定律、常用公式、和运算规则进行化简。常用方法:有吸收法、配项法、合并法、消去法、 冗余法等。代数法化简虽然简单,但必须熟悉逻辑代数运算规则等,且具有一定的试探性,否则达不到最简的目的。
三、逻辑函数的卡诺图法化简
1. 卡诺图:用方格图来描述逻辑函数,由于该方法由卡诺首先提出,所以把方格图称为卡诺图。
2. 如何画卡诺图:n个变量的函数,就有个小方格,一个小方格对应一个最小项,下面是2~5变量卡诺图。
(a) 二变量A、B卡诺图:,。
(b) 三变量A、B、C卡诺图
三变量的八个最小项:。8个最小项在卡诺图小方格上的位置必须以相邻放置→相邻方格中的最小项只差一个变量不同,其他相同。
(c) 四变量卡诺图和五变量卡诺图
3. 逻辑函数的卡诺图表示
方法:首先将函数化成标准的“与—或”式,(最小项之和表达式),将式中最小项相应的小方格填“1”,式中没有的最小项代表的小方格填“0”。填写好后的图形就是该函数的卡诺图了。
4. 卡诺图化简的依据
利用了相邻二个小方格代表的最小项只差一个变量的相邻性,它们可以合并成一项,消去一个变量的性质进行。下面用四变量卡诺图为例加以说明。
如:m0与m1结合(画包围圈),即:。
m0与m4结合(画包围圈),
显示全部