文档详情

北京交通大学2001年研究生入学考试信号与系统复试试题及答案..docx

发布:2017-01-02约1.86千字共12页下载文档
文本预览下载声明
北京交通大学2001年硕士研究生入学考试试题符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位信号,为单位阶跃序列。一、填空 1. 已知,求。 2. 已知,求。 3. 信号通过系统不失真的条件为系统函数。 4. 若最高角频率为,则对取样的最大间隔是。 5. 信号的平均功率为。 6. 已知一系统的输入输出关系为,试判断该系统是否为线性时不变系统 。 7. 已知信号的拉式变换为,求该信号的傅立叶变换=。 8. 已知一离散时间系统的系统函数,判断该系统是否稳定。 9. 。 10. 已知一信号频谱可写为是一实偶函数,试问有何种对称性。二、简单计算题1. 已知连续时间系统的单位冲激响应与激励信号的波形如图A-1所示,试由时域求解该系统的零状态响应,画出的波形。图 A-1 2. 在图A-2所示的系统中,已知,求该系统的单位脉冲响应。图 A-23. 周期信号的双边频谱如图A-3所示,写出的三阶函数表示式。图 A-34. 已知信号通过一线性时不变系统的响应如图A-4所示,试求单位阶跃信号通过该系统的响应并画出其波形。图 A-45. 已知的频谱函数,试求。6. 已知一连续时间系统的单位冲激响应,输入信号时,试求该系统的稳态响应。7. 某离散系统的单位脉冲响应,求描述该系统的差分方程。8. 已知一离散时间系统的模拟框图如图A-5所示,写出该系统状态方程和输出方程。图 A-5三、 综合计算题1. 一线性时不变因果连续时间系统的微分方程描述为 已知由s域求解: (1)零输入响应,零状态响应,完全响应; (2)系统函数,单位冲激响应并判断系统是否稳定; (3)画出系统的直接型模拟框图。2. 一线性时不变因果离散时间系统的差分方程描述为 已知由z域求解: (1)零输入响应,零状态响应,完全响应; (2)系统函数,单位脉冲响应。 (3) 若,重求(1)、(2)。3. 试分析图A-6所示系统中B、C、D、E和F各点频谱并画出频谱图。已知的频谱如图A-6,。图 A-6参考答案一、解:1. ,2. 利用排表法可得3. 信号通过系统不失真的条件为系统函数4. 信号的最高频率为,根据Fourier变换的展缩特性可得信号的最高角频率为,再根据时域抽样定理,可得对信号取样时,其频谱不混叠的最大取样间隔为5. ,利用Parseval功率守恒定理,可得信号的平均功率为6. 根据已知有,由于 ,故系统为线性时变系统。 7. 由于信号s域表达式中有一个极点在右半s平面,故傅立叶变换不存在。 8. 由于系统的极点为,有一个极点在单位圆上,故系统不稳定。 9. 利用冲激信号的展缩特性和取样特性,可得 10. 根据Fourier变换的共轭对称性,由于为实偶函数,故信号应为实偶函数。再利用Fourier变换的时移特性,频谱相频特性对应信号右移3,因此信号是关于t=3的偶对称的实信号。二、解:1. 系统的零状态响应,其波形如图A-7所示。图 A-72. 3. 写出周期信号指数形式的傅立叶级数,利用欧拉公式即可求出其三阶函数表示式为4. 因为故利用线性时不变特性可求出通过该系统的响应为波形如图A-8所示。图 A-85. ,因为,由对称性可得:,因此,有6. 系统的频响特性为利用余弦信号作用在系统上,其零状态响应的特点,即可以求出信号,作用在系统上的稳态响应为7. 对单位脉冲响应进行z变换可得到系统函数为 由系统函数的定义可以得到差分方程的z域表示式为 进行z反变换即得差分方程为 8. 根据图A-5中标出的状态变量,围绕输入端的加法器可以列出状态方程为 围绕输出端的加法器可以列出输出方程为 写成矩阵形式为三、解:1. (1)对微分方程两边做单边拉斯变换得整理后可得 零输入响应的s域表达式为进行拉斯反变换可得零状态响应的s域表达式为进行拉斯反变换可得完全响应为 (2)根据系统函数的定义,可得进行拉斯反变换即得由于系统函数的极点为-2、-5,在左半s平面,故系统稳定。 (3)将系统函数改写为由此可画出系统的直接型模拟框图,如图A-9所示图 A-9 2. (1)对差分方程两边进行z变换得整理后可得进行z变换可得系统零输入响应为零状态响应的z域表示式为进行z反变换可得系统零状态响应为系统的完全响应为(2)根据系统函数的定义,可得进行z反变换即得 (3) 若,则系统的零输入响应、单位脉冲响应和系统函数均不变,根据时不变特性,可得系统零状态响应为完全响应为3. B、C、D、E和F各点频谱分别为频谱图如图A-10所示图 A-10
显示全部
相似文档