耦合邊界条件下蜂窝陶瓷传热及气体流动特性的数值模拟.doc
文本预览下载声明
耦合边界条件下蜂窝陶瓷传热及气体流动特性的数值模拟
龚晖1,2,曾令可2,税安泽2
(1.珠海市旭日陶瓷有限公司,珠海,519110, 2.华南理工大学 材料科学与工程学院,,)
:Numerical Simulation of Honeycomb Ceramic Heat Transfer and Gas Flow Characteristics in Coupled Boundary Conditions
Gong Hui1,2 , Shui Anzei2, Zeng Lingke2
(1.Zhuhai Risingsun Ceramics Co. Ltd, Zhuhai, 519110, 2. College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640)
Abstract In this paper, 3d unsteady model of honeycomb ceramic heat transfer and gas flow characteristics was established. By the use of computational fluid dynamics (CFD) software, the work process of the honeycomb ceramic was simulated in coupled boundary conditions. Through that, the gas temperature and pressure variation at hot end and cold end of honeycomb ceramic in start-up process was gained, as well as the gas temperature, speed and pressure distribution inside the honeycomb ceramics at stable working period. These results can provide a theoretical basis and guidance for the development of high-temperature air technology which uses honeycomb ceramic as regenerator.
Key Words HTAC,Honeycomb Ceramic,Computer Simulation,1为蜂窝陶瓷的矩阵型结构图,忽略蜂窝陶瓷与蓄热室壁面接触的单元格和蜂窝陶瓷体间相互接触处的单元格与其它单元格环境的差异,则可假设各格孔内的传热相同,仅取一个单元孔格作为研究对象,由于蜂窝陶瓷单元格是正方形单管结构,是横截面轴对称的,里面气体的速度、温度及压力分布都具有对称性,因此选取截面的1/4和长度方向的三维空间体积作为计算区域,是较为合理且符合“简化物理模型,便于数值计算”的这一原则。
本文采用堇青石蜂窝陶瓷,假设在整个换热过程中其密度与比热不随温度变化,导热系数为温度的分段线性函数,其值如表2-1:
表2-1 堇青石蜂窝陶瓷物性表[8]
Table3-1 Properties of cordierite honeycomb ceramic
温度(K) 密度(kg/m3) 等压比热Cp(J/(kg·K)) 导热系(W/(m·K)) 300 1700 920 1.97 1500 1700 920 3.94 气体的物性参数:密度、等压比热、导热系数及动力粘度为温度的分段线性函数,具体数据参见文献[9]。
2.2模拟工况及初始条件
本文选定模拟工况为:蜂窝陶瓷孔边长3mm,蜂窝陶瓷高度800mm,入口烟气流速8m/s,入口烟气温度1273K,换向时间30s,蜂窝陶瓷孔壁厚0.8mm。
蜂窝陶瓷及气体的温度初始值T0=303K,气体初始速度设为零,初始表压(Gauge Pressure)设为零。
2.3 求解模型选择及耦合边界条件的设定
由于本文研究的单管模型长度尺度相差很大,所以选用双精度3D求解器,选择分离非稳态解格式,激活能量方程,层流模型[10]。
在CFD软件GAMBIT 中建立网格时采用split volume工具得到交界面处“wall”与“wallshadow”这种特殊的壁面,然后将网格导入CFD软件中在设定边界条件时选择Coupled 边界条件,藕合边界条件如下[11]:
3.结果分析
3.1 启动过程分析
蜂窝陶瓷从303K开始工作,到稳
显示全部