C4.5算法的源代码题稿.doc
文本预览下载声明
数据挖掘分类算法之决策树(zz)
决策树(Decision tree)
???决策树是以实例为基础的归纳学习算法。
??? 它从一组无次序、无规则的元组中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性值从 该结点向下分支,叶结点是要学习划分的类。从根到叶结点的一条路径就对应着一条合取规则,整个决策树就对应着一组析取表达式规则。1986年 Quinlan提出了著名的ID3算法。在ID3算法的基础上,1993年Quinlan又提出了C4.5算法。为了适应处理大规模数据集的需要,后来又 提出了若干改进的算法,其中SLIQ(super-vised learning in quest)和SPRINT (scalable parallelizableinduction of decision trees)是比较有代表性的两个算法。????(1) ID3算法??? ID3算法的核心是:在决策树各级结点上选择属性时,用信息增益(information?gain)作为属性的选择标准,以使得在每一个非叶结点进行测试时,能获得关于被测试记录最大的类别信息。其具体方法是:检测所有的属性,选择信息增益最大的属性产生决策树结点,由该属性的不同取值建立分支,再对各分支的子集递归调用该方法建立决策树结点的分支,直到所有子集仅包含同一类别的数据为止。最后得到一棵决策树,它可以用来对新的样本进行分类。??? 某属性的信息增益按下列方法计算。通过计算每个属性的信息增益,并比较它们的大小,就不难获得具有最大信息增益的属性。??? 设S是s个数据样本的集合。假定类标号属性具有m个不同值,定义m个不同类Ci(i=1,…,m)。设si是类Ci中的样本数。对一个给定的样本分类所需的期望信息由下式给出:??? 其中pi=si/s是任意样本属于Ci的概率。注意,对数函数以2为底,其原因是信息用二进制编码。????设属性A具有v个不同值{a1,a2,……,av}。可以用属性A将S划分为v个子集{S1,S2,……,Sv},其中Sj中的样本在属性A上具有相同的值aj(j=1,2,……,v)。设sij是子集Sj中类Ci的样本数。由A划分成子集的熵或信息期望由下式给出:????熵值越小,子集划分的纯度越高。对于给定的子集Sj,其信息期望为??? 其中pij=sij/sj 是Sj中样本属于Ci的概率。在属性A上分枝将获得的信息增益是??? Gain(A)= I(s1, s2, …,sm)-E(A)??? ID3算法的优点是:算法的理论清晰,方法简单,学习能力较强。其缺点是:只对比较小的数据集有效,且对噪声比较敏感,当训练数据集加大时,决策树可能会随之改变。????(2) C4.5算法??? C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:??? 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;??? 2) 在树构造过程中进行剪枝;??? 3) 能够完成对连续属性的离散化处理;??? 4) 能够对不完整数据进行处理。??? C4.5算法与其它分类算法如统计方法、神经网络等比较起来有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集 进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。????(3) SLIQ算法??? SLIQ算法对C4.5决策树分类算法的实现方法进行了改进,在决策树的构造过程中采用了“预排序”和“广度优先策略”两种技术。??? 1)预排序。对于连续属性在每个内部结点寻找其最优分裂标准时,都需要对训练集按照该属性的取值进行排序,而排序是很浪费时间的操作。为此,SLIQ算法 采用了预排序技术。所谓预排序,就是针对每个属性的取值,把所有的记录按照从小到大的顺序进行排序,以消除在决策树的每个结点对数据集进行的排序。具体实 现时,需要为训练数据集的每个属性创建一个属性列表,为类别属性创建一个类别列表。??? 2)广度优先策略。在C4.5算法中,树的构造是按照深度优先策略完成的,需要对每个属性列表在每个结点处都进行一遍扫描,费时很多,为此,SLIQ采用 广度优先策略构造决策树,即在决策树的每一层只需对每个属性列表扫描一次,就可以为当前决策树中每个叶子结点找到最优分裂标准。??? SLIQ算法由于采用了上述两种技术,使得该算法能够处理比C4.5大得多的训练集,在一定范围内具有良好的随记录个数和属性个数增长的可伸缩性。??? 然而它仍然存在如下缺点:??? 1)由于需要将类别列表存放于内存,而类别列表
显示全部