文档详情

计算机专业英语学术论文.pdf

发布:2017-05-08约2.51万字共7页下载文档
文本预览下载声明
ComputerTechnologyandApplication3(2012)361-367 … MonitoringFreewayIncidentDetectionUsingaHotelling ControlChart JoonseLim’一. YoungSeonJeong andYoungsulJeong 1.PolytechnicInstituteofNewYorkUniversity,SixMetroTechCenter,Brooklyn.NewYo 11201.USA 2.GeorgetownPreparatorySchool,10900RockvillePike,NorthBethesda,MD 20852,USA 3.DepartmentofIndustrialandSystemsEngineering,KhalifaUniversiytofSeienee,TechnologyandResearch,AbuDhabi,UAE 4.DepartmentofNaturalSciences,WashingtonBaptistUniversiyt,Annandale,VA22003,USA Received:March12,2012/Accepted:M arch31,2012/Published:M ay25,2012 Abstract:Inreal-liferfeewaytransportationsystem,afewnumberofincidentobservation(veryrareevent)isavailablewhilethereare largenumbersofnormalconditiondataset.Mostofresearchesonfreewayincidentdetectionhaveconsideredtheincidentdetection problem asclassification one.However,becauseofinsufficiencyofincidentevents,mostofpreviousresearcheshaveutilized simulatedincidenteventstodevelopfreewayincidentdetectionmodels.Inordertoovercomethisdrawback.thispaperproposesa wavelet-basedHotelling controlchart forfreeway incidentdetection.whichintegratesawavelettransform intoanabnorma1 detectionmethod.Firstly,wavelettransform extractsusefu1featuresrfom noisyoriginaltraffi cobservations.1eadingtoreducethe dimensionalityofinputvectors.Then.aHotelling controlchartdescribesadecisionboundarywithonlynormaItrafficobservations withtheselectedfeaturesinthewaveletdomain.Unliketheexistingincidentdetectionalgorithms.whichrequirelotsofincident observationstoconstructincidentdetectionmodels,theproposedapproachcandecideadecisionboundary givenonlynormaltraining observations.TheproposedmethodisevaluatedincomparisonwithCaliforniaalgorithm.M innesotaalgorithm andconventional neuralnetworks.Theexperimentalresultspresentthattheproposedalgorithm inthispaperisapromisingaltemativeforrfeeway automati
显示全部
相似文档