计算机专业英语学术论文.pdf
文本预览下载声明
ComputerTechnologyandApplication3(2012)361-367
…
MonitoringFreewayIncidentDetectionUsingaHotelling
ControlChart
JoonseLim’一. YoungSeonJeong andYoungsulJeong
1.PolytechnicInstituteofNewYorkUniversity,SixMetroTechCenter,Brooklyn.NewYo 11201.USA
2.GeorgetownPreparatorySchool,10900RockvillePike,NorthBethesda,MD 20852,USA
3.DepartmentofIndustrialandSystemsEngineering,KhalifaUniversiytofSeienee,TechnologyandResearch,AbuDhabi,UAE
4.DepartmentofNaturalSciences,WashingtonBaptistUniversiyt,Annandale,VA22003,USA
Received:March12,2012/Accepted:M arch31,2012/Published:M ay25,2012
Abstract:Inreal-liferfeewaytransportationsystem,afewnumberofincidentobservation(veryrareevent)isavailablewhilethereare
largenumbersofnormalconditiondataset.Mostofresearchesonfreewayincidentdetectionhaveconsideredtheincidentdetection
problem asclassification one.However,becauseofinsufficiencyofincidentevents,mostofpreviousresearcheshaveutilized
simulatedincidenteventstodevelopfreewayincidentdetectionmodels.Inordertoovercomethisdrawback.thispaperproposesa
wavelet-basedHotelling controlchart forfreeway incidentdetection.whichintegratesawavelettransform intoanabnorma1
detectionmethod.Firstly,wavelettransform extractsusefu1featuresrfom noisyoriginaltraffi cobservations.1eadingtoreducethe
dimensionalityofinputvectors.Then.aHotelling controlchartdescribesadecisionboundarywithonlynormaItrafficobservations
withtheselectedfeaturesinthewaveletdomain.Unliketheexistingincidentdetectionalgorithms.whichrequirelotsofincident
observationstoconstructincidentdetectionmodels,theproposedapproachcandecideadecisionboundary givenonlynormaltraining
observations.TheproposedmethodisevaluatedincomparisonwithCaliforniaalgorithm.M innesotaalgorithm andconventional
neuralnetworks.Theexperimentalresultspresentthattheproposedalgorithm inthispaperisapromisingaltemativeforrfeeway
automati
显示全部