文档详情

简单传热学计算机分析MatlabPDE二维不稳态焊接热传导求解.PPT

发布:2018-04-27约1.2万字共49页下载文档
文本预览下载声明
计算机在材料科学与工程中的应用 叶卫平 本 章 要 点 4.1材料学主要物理场 4.1材料学主要物理场 4.2 传热学基本概念 4.2 传热学基本概念 4.2 传热学基本概念 4.2 传热学基本概念 4.2 传热学基本概念 4.3 有限差分求解 4.3 有限差分求解 4.3 有限差分求解 4.3 有限差分求解 4.3 有限差分求解 4.3 有限差分求解 4.3 有限差分求解 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.4 简单传热学计算机分析 4.5 材料学中的应力场简介 4.5 材料学中的应力场简介 4.5 材料学中的应力场简介 4.5 材料学中的应力场简介 4.5 材料学中的应力场简介 4.5 材料学中的应力场简介 4.5 材料学中的应力场简介 4.6 材料学中的浓度场简介 4.6 材料学中的浓度场简介 4.6 材料学中的浓度场简介 4.6 材料学中的浓度场简介 4.6 材料学中的浓度场简介 4.6 材料学中的浓度场简介 4.6 材料学中的浓度场简介 4.6 材料学中的浓度场简介 4.7 其他偏微分方程分析软件简介 解此线性方程组,即可得到各节点的温度值。 图4-2中是一个长宽比为2:1的矩形区域,已经划分为矩形网格,且其长度方向和宽度方向的步长相等。其中内部三个节点记为1、2、3,这些节点的温度未知。假设所有边界点的温度已知,而且区域内无内热源。下面利用有限差分方法来计算节点1、2、3的温度。 薄板焊接中移动热源为例,取焊件的一半作为模型进行离散化(图4-3).电弧起始点为O点,此后以速度v沿y轴移动,经过τ时间后到这O’点,此时由于热源引起的热能分布为: 图4-2中是一个长宽比为2:1的矩形区域,已经划分为矩形网格,且其长度方向和宽度方向的步长相等。其中内部三个节点记为1、2、3,这些节点的温度未知。假设所有边界点的温度已知,而且区域内无内热源。下面利用有限差分方法来计算节点1、2、3的温度。 薄板焊接中移动热源为例,取焊件的一半作为模型进行离散化(图4-3).电弧起始点为O点,此后以速度v沿y轴移动,经过τ时间后到这O’点,此时由于热源引起的热能分布为: 薄板焊接中移动热源为例,取焊件的一半作为模型进行离散化(图4-3).电弧起始点为O点,此后以速度v沿y轴移动,经过τ时间后到这O’点,此时由于热源引起的热能分布为: 薄板焊接中移动热源为例,取焊件的一半作为模型进行离散化(图4-3).电弧起始点为O点,此后以速度v沿y轴移动,经过τ时间后到这O’点,此时由于热源引起的热能分布为: 薄板焊接中移动热源为例,取焊件的一半作为模型进行离散化(图4-3).电弧起始点为O点,此后以速度v沿y轴移动,经过τ时间后到这O’点,此时由于热源引起的热能分布为: 薄板焊接中移动热源为例,取焊件的一半作为模型进行离散化(图4-3).电弧起始点为O点,此后以速度v沿y轴移动,经过τ时间后到这O’点,此时由于热源引起的热能分布为: 薄板焊接中移动热源为例,取焊件的一半作为模型进行离散化(图4-3).电弧起始点为O点,此后以速度v沿y轴移动,经过τ时间后到这O’点,此时由于热源引起的热能分布为: Key Features Complete GUI for pre- and post-processing 2-D PDEs Automatic and adaptive meshing Geometry creation using constructive solid geometry (CSG) paradigm Boundary condition specification: Dirichlet, generalized Neumann, and mixed Flexible coefficient and PDE problem specification using MATLAB syntax Fully automated mesh generation and refinement Nonlinear and adaptive solvers handle systems with multiple dependent variables Simultaneous visualization of mult
显示全部
相似文档