模拟电路7解析.ppt
文本预览下载声明
3. 研究的问题 T 形反馈网络反相比例运算电路 3、电压跟随器 1. 反相求和 设 R1∥ R2∥ R3∥ R4= R∥ Rf 设 R1∥ R2∥ R3∥ R4= R∥ Rf 3. 加减运算 讨论:求解图示电路 讨论:求解图示电路 四、积分运算电路和微分运算电路 利用积分运算的基本关系实现不同的功能 一、概述 3. 无源滤波电路和有源滤波电路 有源滤波电路 二、低通滤波器 1. 同相输入(1)一阶电路:幅频特性 (2)简单二阶LPF (3)压控电压源二阶LPF (3)压控电压源二阶LPF 2. 反相输入低通滤波器 运算电路与有源滤波器的比较 相同之处 电路中均引入深度负反馈,因而集成运放均工作在线性区。 均具有“虚短”和“虚断”的特点,均可用节点电流法求解电路。 不同之处 运算电路研究的是时域问题,有源滤波电路研究的是频域问题;测试时,前者是在输入信号频率不变或直流信号下测量输出电压与输入电压有效值或幅值的关系,后者是在输入电压幅值不变的情况下测量输出电压幅值与输入电压频率的关系。 运算电路用运算关系式描述输出电压与输入电压的关系,有源滤波器用电压放大倍数的幅频特性描述滤波特性。 集成运算放大器 例7: (北京理工大学研究生入学试题) 如图所示电路, 运算放大器都是理想器件, 电容C上的初始电压为零。 求:Vo(t)与 Vi(t)的关系表达式。 因理想运算放大器满足V+=V-,于是有: 解:积分电路有: 即: 集成运算放大器 1. 滤波 使指定频段的信号顺利通过,其它频率的信号被衰减。 2. 滤波电路的种类 低通滤波器(LPF) 通带放大倍数 通带截止频率 理想幅频特性 无过渡带 用幅频特性描述滤波特性,要研究 、 ( fP、下降速率)。 §7.3 有源滤波电路(不讲) 下降速率 高通滤波器(HPF) 带通滤波器(BPF) 带阻滤波器(BEF)) 全通滤波器(APF)) 理想滤波器的幅频特性 阻容耦合 选频电路 抗已知频率的干扰 f-φ转换 一、概述 空载时 带负载时 负载变化,通带放大倍数和截止频率均变化。 一、概述 无源滤波电路的滤波参数随负载变化;有源滤波电路的滤波参数可以不随负载变化,还可以有放大。 无源滤波电路可用于高电压大电流,如直流电源中的滤波电路;有源滤波电路是信号处理电路,其输出电压和电流的大小受有源元件自身参数和供电电源的限制。 用电压跟随器隔离滤波电路与负载电阻 一、概述 求解传递函数时,只需将放大倍数中的 jω用 s 取代即可; s 的方次称为阶数。 频率趋于0时的放大倍数为通带放大倍数 决定于RC环节 表明进入高频段的下降速率为 -20dB/十倍频 (1)一阶电路 1. 同相输入 经拉氏变换得电路的传递函数: 一阶电路 §7.3 有源滤波电路 为了使过渡带变窄,需采用多阶滤波器,即增加RC环节。 二、低通滤波器 截止频率 fp ≈ 0.37f0 分析方法:电路引入了负反馈,具有“虚短”和“虚断”的特点利用节点电流法求解输出电压与输入电压的关系。 C1=C2 二、低通滤波器 引入正反馈 为使 fp= f0,且在f = f0时幅频特性按-40dB/十倍频下降。 f→0时,C1断路,正反馈断开,放大倍数为通带放大倍数。 f →∞, C2短路,正反馈不起作用,放大倍数→0 。 因而有可能在f = f 0时放大倍数等于或大于通带放大倍数。对于不同频率的信号正反馈的强弱不同。 C1=C2 二、低通滤波器 列P、M点的节点电流方程,整理可得: 二、低通滤波器 积分运算电路的电压放大倍数为 加R2后 需有电阻构成的负反馈网络来确定通带放大倍数。 1 2 lg 20 R R - 第七章 信号的运算和处理 §7.1 集成运放组成的运算电路(重点) Aod、 rid 、fH 均为无穷大,ro、失调电压及其温漂、失调电流及其温漂、噪声均为0。 因为uO为有限值, Aod=∞,所以 uN-uP=0,即 uN=uP…………虚短路 因为rid=∞,所以 iN=iP=0………虚断路 电路特征:引入电压负反馈。 无源网络 2. 集成运放的线性工作区: uO=Aod(uP- uN) 1. 理想运放的参数特点 §7.1 集成运放组成的运算电路 一、概述 (1)运算电路:运算电路的输出电压是输入电压某种运算的结果,如加、减、乘、除、乘方、开方、积分、微分、对数、指数等。 (2)描述方法:运算关系式 uO=f (uI) (3)分析方法:“虚短”和“虚断”是基本出发点。 (1)识别电路; (2)掌
显示全部