文档详情

2016年各地中考数学解析版试卷分类汇编解直角三角形.doc

发布:2016-11-22约1.76万字共37页下载文档
文本预览下载声明
解直角三角形 .(2016福州,9,3分)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是(  ) A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα) 【考点】解直角三角形;坐标与图形性质. 【专题】计算题;三角形. 【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标. 【解答】解:过P作PQ⊥OB,交OB于点Q, 在Rt△OPQ中,OP=1,∠POQ=α, ∴sinα=,cosα=,即PQ=sinα,OQ=cosα, 则P的坐标为(cosα,sinα), 故选C. 【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键. 2.(2016·云南)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要(  ) A.米2 B.米2 C.(4+)米2 D.(4+4tanθ)米2 【考点】解直角三角形的应用. 【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果. 【解答】解:在Rt△ABC中,BC=AC?tanθ=4tanθ(米), ∴AC+BC=4+4tanθ(米), ∴地毯的面积至少需要1×(4+4tanθ)=4+tanθ(米2); 故选:D. 【点评】本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键. 3.(2016·四川巴中)一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是(  ) A.斜坡AB的坡度是10° B.斜坡AB的坡度是tan10° C.AC=1.2tan10°米 D.AB=米 【考点】解直角三角形的应用-坡度坡角问题. 【分析】根据坡度是坡角的正切值,可得答案. 【解答】解:斜坡AB的坡度是tan10°=,故B正确; 故选:B. 4.(2016山东省聊城市,3分)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)(  ) A.169米 B.204米 C.240米 D.407米 【考点】解直角三角形的应用-仰角俯角问题. 【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD?tan∠ACD=CD?tan33°,在Rt△BCO中,求得OD=CD?tan∠BCO=CD?tan21°,列方程即可得到结论. 【解答】解:过C作CD⊥AB于D, 在Rt△ACD中,AD=CD?tan∠ACD=CD?tan33°, 在Rt△BCO中,OD=CD?tan∠BCO=CD?tan21°, ∵AB=110m, ∴AO=55m, ∴A0=AD﹣OD=CD?tan33°﹣CD?tan21°=55m, ∴CD==≈204m, 答:小莹所在C点到直径AB所在直线的距离约为204m. 故选B. 【点评】此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键. 5.(2016.山东省泰安市,3分)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)(  ) A.22.48 B.41.68 C.43.16 D.55.63 【分析】过点P作PA⊥MN于点A,则若该船继续向南航行至离灯塔距离最近的位置为PA的长度,利用锐角三角函数关系进行求解即可 【解答】解:如图,过点P作PA⊥MN于点A, MN=30×2=60(海里), ∵∠MNC=90°,∠CPN=46°, ∴∠MNP=∠MNC+∠CPN=136°, ∵∠BMP=68°, ∴∠PMN=90°﹣∠BMP=22°, ∴∠MPN=180°﹣∠PMN﹣∠PNM=22°, ∴∠PMN=∠MPN, ∴MN=PN=60(海里), ∵∠CNP=46°
显示全部
相似文档