文档详情

《七年级数学有理数的乘方教学设计.doc

发布:2017-01-14约2.53千字共5页下载文档
文本预览下载声明
《有理数的乘方》 山东省寿光市文家中学:桑久辉 一、教学目标: 1、认知目标 正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。 2、能力目标 (1). 通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。 (2).使学生能够灵活地进行乘方运算。 3、情感目标 让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。 二、教学重难点和关键: 1、教学重点:正确理解乘方的意义,掌握乘方运算法则。 2、教学难点:正确理解乘方、底数、指数的概念,并合理运算, 3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。 三、教学方法 考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。 四、教学过程: 1、创设情境,导入新课: 这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。 师:假如我现在抽取的是黑3 红3 黑4 红5 (幻灯片放映图片)如何算24? 师:如果四张都是3呢? 生答: -3 - 3×3×(-3)= 师:现在老师把扑克牌拿掉一张红3,变成2个黑3 ,1个红3,大家有办法凑成24吗? 生:思考几分钟后,有同学会想出的答案 师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课) 2、动手实践,共同探索乘方的定义 学生活动:请同学们拿出一张纸进行对折,再对折 问题:(1)对折一次有几层? 2 (2)对折二次有几层? (3)对折三次有几层? (4)对折四次有几层? …… 师:一直对折下去,你会发现什么? 生:每一次都是前面的2倍。 师:请同学们猜想:对折20次有几层?怎样去列式? 生:20个2相乘 师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法? 简记: …… 师:请同学们总结 对折n次有几层?可以简记为什么? 2×2×2×2……×2 n个2 生:可简记为: 师:猜想: 生: 师:怎样读呢? 生:读作的次方 老师总结:求个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在中,叫做底数(相同 的因数),叫做指数(相同因数的个数)。 注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂. 小试牛刀: 练习一:把下列各式写成乘方运算的形式: 6×6×6= (-3) (-3) (-3) (-3)= 2.1×2.1×2.1×2.1×2.1= = 注意:当底数是负数或分数时,底数一定要加上括弧,这也是辩认底数的方法. 练习二、说出下列各式的底数、指数、及其意义 3.学生分小组讨论,总结乘方运算的性质 师:我们在进行有理数乘法计算的时候,要先确定积的符号,然后再把绝对值相乘。我们知道乘方是一种特殊的乘法运算,那对于乘方运算的结果如何来确定积的符号呢?用幻灯片出示表格,计算后,请同桌之间进行讨论并总结。 (师进行适当的引导,从底数和指数两方面进行考虑) 教师再对各种情况进行分析总结。 师生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都为0。 4、应用新知,尝试练习:在七年级数学晚会上,有6个同学藏在盾牌后面,男同学的盾牌上写的是一个正数,女同学的盾牌上写的是一个负数,这6个盾牌如下图所示,请算一算,盾牌后面男女生各有多少人? (-3) ;(-5);(-7);(-10);12;(-16) 乘方的运算是本节内容的第二个难点,符号确定后,学生往往容易犯直接拿底数和指数相乘的错误,所以准备了下面的例题,且要求学生写出相应的过程,加深对乘方运算的理解 例1:计算(教师板演一题后请学生板演) (1)
显示全部
相似文档