运筹学-无约束最优化方法.pdf
文本预览下载声明
第四章
无约束最优化方法
§1 最优性条件
设j (a)为一元可微函数,若a*为j (a)的局部极小
点,则j ’(a)=0.
2
g (x) f (x), G(x) f (x)
定理1.1 (一阶必要条件)
* *
若x 为f (x) 的局部极小点,且在x 的某邻域内具
有一阶连续偏导数,则
* *
g f (x ) 0
(满足等式的点x*驻点,可分为极小点、极大点、鞍点) 2
Proof (basic idea):
* n * T *
If g 0, then there exist p R (i.e., p g ),such that p g 0.
By mean value theorem, there exists a1 (0, a) such that
f (x * ap ) f (x * ) ap Tg (x * a p ).
1
*
Since g C(N (x )), there exists 0, such thata (0, a),
p Tg * (x * a p ) 0,
1
* *
f (x ap ) f (x ) (contradiction!)
二阶充分条件
设j (a)为一元二阶可导函数,若j ’(a *)=0,
j ”(a*)0 则a*为j (a)的严格局部极小点,
定理1.2(二阶充分条件)
若在x *的某邻域内f (x)有二阶连续偏导数且
g *=0,G(x *)正定,则x *为问题(3.1)的严格局部
极小点.
(basic idea):
* 1 * * * * 2
f (x ) f (x ) (x x )G (x x ) o ( x x )
2
* 1 * * 2 * 2 * *
f (x ) max (G ) x x o ( x x ) f (x ) (when x x 1 )
2 4
定理1.3(二阶必要条件)
若x *为f (x) 的局部极小点,且在x *的某邻域内
f (x)有二阶连续偏导数,则g *=0,G(x *)半正定.
Proof (basic idea):
take p R n \{0},and define j (a )=f (x * a p ).Then
T * T *
j (a ) g (x a p ) p,j (a ) p G (x a p ) p,
Since j (a ) j (0) for sufficiently small a ,
j (0) 0,j (0) 0,namely,
显示全部