文档详情

信息论第二章答案概要.doc

发布:2017-02-04约3.85千字共17页下载文档
文本预览下载声明
2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 解: 四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3} 八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则: 四进制脉冲的平均信息量 八进制脉冲的平均信息量 二进制脉冲的平均信息量 所以: 四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。 2.2 一副充分洗乱了的牌(含52张牌),试问 (1) 任一特定排列所给出的信息量是多少? (2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量? 解: (1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是: (2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下: (a)p(xi)=52/52 * 48/51 * 44/50 * 40/49 * 36/48 * 32/47 * 28/46 * 24/45 * 20/44 * 16/43 * 12/42 * 8/41 * 4/40=1.0568E-4 (b)总样本:C1352, 其中13点数不同的数量为4*4*4*…*4=413。所以,抽取13张点数不同的牌的概率: 2.3 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量? 解: 设随机变量X代表女孩子学历 X x1(是大学生) x2(不是大学生) P(X) 0.25 0.75 设随机变量Y代表女孩子身高 Y y1(身高160cm) y2(身高160cm) P(Y) 0.5 0.5 已知:在女大学生中有75%是身高160厘米以上的 即: 求:身高160厘米以上的某女孩是大学生的信息量 即: 2.4 设离散无记忆信源,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少? (2) 此消息中平均每符号携带的信息量是多少? 解: (1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是: 此消息的信息量是: (2) 此消息中平均每符号携带的信息量是: 2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少? 解: 男士: 女士: 2.6 设信源,求这个信源的熵,并解释为什么H(X) log6不满足信源熵的极值性。 解: 不满足极值性的原因是。 2.7 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。 解: (1) (2) (3) 两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66 共有21种组合: 其中11,22,33,44,55,66的概率是 其他15个组合的概率是 (4) 参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下: (5) 2.8证明:H(X1X2 。。。 Xn) ≤ H(X1) + H(X2) + … + H(Xn)。 证明: 2.9 证明:H(X3/X1X2) ≤ H(X3/X1),并说明当X1, X2, X3是马氏链时等式成立。 证明: 2.10 对某城市进行交通忙闲的调查,并把天气分成晴雨两种状态,气温分成冷暖两个状态,调查结果得联合出现的相对频度如下: 若把这些频度看作概率测度,求: (1) 忙闲的无条件熵; (2) 天气状态和气温状态已知时忙闲的条件熵; (3) 从天气状态和气温状态获得的关于忙闲的信息。 解: (1) 根据忙闲的频率,得到忙闲的概率分布如下: (2) 设忙闲为随机变量X,天气状态为随机变量Y,气温状态为随机变量Z (3)
显示全部
相似文档