文档详情

2014年北京市房山初三上学期期末考试试题答案.doc

发布:2017-09-22约2.77千字共7页下载文档
文本预览下载声明
2011——2012学年度第一学期终结性检测试卷 九年级数学答案 一、(本题共32分,每小题4分)选择题(以下各题都给出了代号分别为A、B、C、D的四个备选答案,其中有且只有一个是正确的,请你把正确答案的代号填入相应的表格中): 题号 1 2 3 4 5 6 7 8 答案 D C B A C D B B 二、(本大题共16分,每小题4分)填空题: 9、60°. 10、 . 11、 5. . 12、 6. 三、(本大题共30分,每小题5分)解答题: 13、 解:原式=2×+4×·----------------3分 =1+6- ----------------------------4分 = ---------------------------------------------5分 14、 解:设抛物线解析式为:----------------1分 由题意知: --------------------------------------2分 解得: ----------------------------------------------4分 ∴抛物线解析式为 -----------------------------5分 15、 证明:联结OC.--------------------------1分 在⊙O中,∵= ∴∠AOC=∠BOC -----------------------------2分 ∵OA=OB, 分别是半径和的中点、证明:∵四边形ABCD是平行四边形 ∴ AB=CD , ∠A=∠C,AD∥BC -----------1分 ∴∠ADF=∠E -------------------------2分 ∴△ADF∽△CED ----------------------3分 ∴AD:AF=EC:DC -----------------------4分 ∴AD:AF=CE:AB -----------------------5分 17、证明:延长CO交⊙O于点F,联结AF.------1分 ∵CF是直径 ∴∠FAC=90°,∴∠F+∠1=90°------2分 ∵EO⊥BC,∴∠EDB=90° ∴∠B+∠E=90°--------------------3分 ∵∠F=∠B------------------------4分 ∴∠1=∠E------------------------5分 18、解:(1) ----------------2分 (2)点旋转到点所经过的路线长为=4--------5分 四、(本大题共20分,每小题5分)解答题: 19、解:(1)如图,过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足.∵在C点测得B点的俯角为30°∴∠CBD=30°,又BC=400米, ∴CD=400×sin30°=400×=200(米). ∴B点的海拔为721﹣200=521(米). (2)∵BE=DF =521﹣121=400米,∵AB=1040米 ∴AE===960米∴AB的坡度iAB===,故斜坡AB的坡度为1:2.4.20 、解:过点A作AC⊥x轴于点C.----1分 ∵sin∠AOE=, ∴AC=OA·sin∠AOE=4 由勾股定理得:CO==3 ∴A(-3,4)------------------------3分 把A(-3,4)代入到中得m=-12 ∴反比例函数解析式为-----------4分 ∴=-12,∴,∴B(6,-2) ∴有,解得: ∴,一次函数的解析式为.-------5分 21、解:(1)连接OE∵AB、AC分别切⊙O于D、E两点,∴∠ADO=∠AEO=90° 又∵∠A=90°∴四边形ADOE是矩形∴四边形ADOE是正方形,∴OD∥AC,OD=AD=3∴∠BOD=∠C, ∴在Rt△BOD中,= ∴tanC=.如图,设⊙O与BC交于M、N两点, 由(1)得:四边形ADOE是正方形,∴∠DOE=90°, ∴∠COE+∠BOD=90°, ∵在Rt△EOC中,,OE=3,∴ ∴S扇形DOM+S扇形EON=S扇形DOE=, ∴S阴影=S△BOD+S△COE﹣(S扇形DOM+S扇形EON)=, 答:图中两部分阴影面积的和为.∵∠D
显示全部
相似文档