列管式换热器的设计.doc
文本预览下载声明
目录
一、方案简介································································1
方案设计································································2
确定设计方案·····························································2
确定物性数据·····························································2
计算总传热系数···························································3
计算传热面积·····························································3
工艺结构尺寸·····························································4
换热器核算·······························································5
设计结果一览表··························································8
附图(主体设备设计条件图)(详情参见图纸)································8
参考文献································································9
主要符号说明····························································9
心得体会·································································10
附图··········································································
一、方案简介
本设计任务是利用冷流体(水)给硝基苯降温。利用热传递过程中对流传热原则,制成换热器,以供生产需要。下图(图1)是工业生产中用到的列管式换热器.
选择换热器时,要遵循经济,传热效果优,方便清洗,复合实际需要等原则。换热器分为几大类:夹套式换热器,沉浸式蛇管换热器,喷淋式换热器,套管式换热器,螺旋板式换热器,板翅式换热器,热管式换热器,列管式换热器等。不同的换热器适用于不同的场合。而列管式换热器在生产中被广泛利用。它的结构简单、坚固、制造较容易、处理能力大、适应性大、操作弹性较大。尤其在高压、高温和大型装置中使用更为普遍。所以首选列管式换热器作为设计基础。
二、方案设计
某厂在生产过程中,需将硝基苯液体从100℃冷却到45℃。处理能力为1.5×105吨/年。冷却介质采用自来水,入口温度30℃,出口温度40℃。要求换热器的管程和壳程的压降不大于10kPa。试设计能完成上述任务的列管式换热器。(每年按330天,每天24小时连续运行)
1.确定设计方案
(1)选择换热器的类型
两流体温度变化情况:
热流体进口温度100℃,出口温度45℃冷流体。
冷流体进口温度30℃,出口温度40℃。
从两流体温度来看,估计换热器的管壁温度和壳体壁温之差不会很大,因此初步确定选用固定管板式换热器。
(2)流动空间及流速的确定
由于硝基苯的粘度比水的大,因此冷却水走管程,硝基苯走壳程。另外,这样的选择可以使硝基苯通过壳体壁面向空气中散热,提高冷却效果。同时,在此选择逆流。选用ф25×2.5的碳钢管,管内流速取ui=0.5m/s。
2、确定物性数据
定性温度:可取流体进口温度的平均值。
壳程硝基苯的定性温度为:
管程流体的定性温度为:
根据定性温度,分别查取壳程和管程流体的有关物性数据。
硝基苯在72.5℃下的有关物性数据如下:
密度 ρo=1153 kg/m3
定压比热容 cpo=1.559kJ/(kg·℃)
导热系数 λo=0.129 W/(m·℃)
粘度 μo=0.000979 Pa·s
冷却水在35℃下的物性数据:
密度 ρi=994.3kg/m3
定压比热容 cpi=4.24 kJ/(kg·℃)
导热系数 λi=0.618 W/(m·℃)
粘度 μi=
显示全部