第一章概论.ppt
文本预览下载声明
非全耗尽型光电二极管的典型相应时间 光电二极管脉冲响应 1. 为了获得较高的量子效率,耗尽区宽度w必须大于1/as (吸 收系数的倒数),以便可以吸收大部分的光; 2. 同时如果w较大,会让二极管结电容C变小,于是RLC常数 变小,从而得到较快的响应; 3. 但是过大的w会导致渡越时间的增大 折衷取值范围:1/as w 2/as 不同参数条件下,光电二极管的脉冲响应 带宽 设RT是负载电阻和放大器输出电阻的组合,CT是光电二极管结电容和放大器输入电容之和,则检测器可以近似为一个RC低通滤波器,其带宽为: 例:如果光电二极管的电容为3 PF,放大器电容为4 PF,负载电阻为1 K欧姆,放大器输入电阻为1欧姆,则CT = 7 PF,RT =1 K欧姆,所以电路带宽: 如果将负载电阻降为50欧姆,电路带宽增加为455 MHz。 4. APD的倍增因子 APD的电流增益,即平均倍增因子M可表示为: 式中:Ip为APD倍增后的光生电流;Ip0是未倍增时的原始光生电流。若无倍增时和倍增时的总电流分别为I1和I2,则应扣除当时的暗电流Id1和Id2后才能求出M。 5. 光电检测器的噪声 输出端光信噪比: S/N = 光电流信号/(光检测器噪声功率+放大器噪声功率) 为了得到较高的信噪比: 1. 光检测器具有较高的量子效率,以产生较大的信号功率 2. 使光检测器和放大器噪声尽可能的低 噪声来源 信号功率为P(t)的调制光信号落在检测器上,则产生的初级光电流为: 对于pin,均方信号电流为: 对于APD,均方信号电流为: 信号部分:光生电流信号 对于一个调制指数为m的正弦输入信号,信号成分为: 光电检测器的噪声包括量子噪声、光电二极管材料引起的暗电流噪声和由倍增过程产生的倍增噪声。 量子噪声是光电子产生和收集过程具有的统计特性。对于接收带宽为B的接收机,量子噪声均方根电流和光电流Ip的平均值成正比。其中F(M) ? Mx是噪声系数,它与雪崩过程的随机特性有关。 光检测器暗电流是指没有光入射时流过检测器的偏置电路的电流,它是体暗电流和表面暗电流之和: 表面暗电流:表面缺陷、清洁程度等引起的漏电流。 体暗电流:pn结区热产生的电子和(或)空穴。 因子F(M)用于衡量由于倍增过程的随机性导致的检测器噪声的增加。参数x称为过剩噪声指数,一般取决于材料,并在0~1之间变化,x对于Si APD为0.3,对InGaAs APD为0.7,对Ge APD 为1.0。 对于pin光电二极管,F(M)和M都等于1。 雪崩倍增噪声 APD中的雪崩过程具有统计特性,不同的光生载流子的放大倍数可能不同,给放大后的信号带来了幅度上的随机噪声。这里定义F(M)为过剩噪声因子,它近似等于: 光检测器的总均方噪声电流为: 放大器输入阻抗一般远大于负载电阻RL,因此检测器的负载热噪声由RL的热噪声决定: 总噪声 其中KB为波尔兹曼常数,T是绝对温度。 InGaAs光电二极管在波长为1300 nm时有如下参数:初级体暗电流ID = 4 nA,负载电阻RL = 1000 W,量子效率h=0.90,表面暗电流可以忽略,入射光功率为300 nW (-35 dBm),接收机带宽为20 MHz,计算接收机的各种噪声。 首先计算初级光电流: 量子噪声均方根电流: 例 光检测器暗电流: 负载均方热噪声电流为: 例 (续) 小结:对于 pin 光电二极管,主要噪声电流来自检测器负载电阻和放大电路的有源器件;而对于雪崩二极管,热噪声并不占重要地位,主要噪声来源于光检测器的量子噪声和体暗电流。 信噪比 最佳增益:使信噪比最大的M值。 温度对雪崩增益的影响 电子空穴的电离速度取决于温度使得APD对温度非常敏感。电离速度变快,增益会增加。为保证温度变化时增益不变,需要增加一个补偿电路,根据温度变化调整偏置电压。 给定偏置电压,降低温度,则 电离速度增加,电流增益变大 电流增益 电压 偏置电压很大时,对温 度的敏感程度大大增加 其中,VB与温度的关系: 参数n也随温度变化: a, b可从实验中得到。 回顾M与VB(击穿电压)的关系: 6.2.2 光电检测器的典型指标及简易检测 1. 光电检测器的典型指标 表6.1中列出了富士通公司生产的两种光电检测器的典型指标。 2. 光电器件的简易检测 与光源器件一样,在没有测试条件的情况下,使用人员也可以借助于指针式万用表对光电检测器件进行简易的测试。这种测试方法主要是检查光电检测器件PN结的好坏:PN结好不能保证器件具有好的特性,而PN不好的器件其质量绝对不会好。常用光电检测器件的参考数据如表6.2所示。 作业
显示全部