2018年全国普通高等学校招生统一考试理科数学(新课标II卷)【精】.doc
文本预览下载声明
快乐
快乐
绝密★启用前
2018年全国普通高等学校招生统一考试理科数学(新课标II卷)
试卷副标题
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、单选题
1.
A. B. C. D.
2.已知集合,则中元素的个数为
A. 9 B. 8 C. 5 D. 4
3.函数的图像大致为
A. A B. B C. C D. D
4.已知向量,满足,,则
A. 4 B. 3 C. 2 D. 0
5.双曲线的离心率为,则其渐近线方程为
A. B. C. D.
6.在中,,,,则
A. B. C. D.
7.为计算,设计了下面的程序框图,则在空白框中应填入
A.
B.
C.
D.
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是
A. B. C. D.
9.在长方体中,,,则异面直线与所成角的余弦值为
A. B. C. D.
10.若在是减函数,则的最大值是
A. B. C. D.
11.已知是定义域为的奇函数,满足.若,则
A. B. 0 C. 2 D. 50
12.已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为
A. B. C. D.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
13.曲线在点处的切线方程为__________.
14.若满足约束条件 则的最大值为__________.
15.已知,,则__________.
16.已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.
评卷人
得分
三、解答题
17.记为等差数列的前项和,已知,.
(1)求的通项公式;
(2)求,并求的最小值.
18.下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
19.设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
20.如图,在三棱锥中,,,为的中点.
(1)证明:平面;
(2)若点在棱上,且二面角为,求与平面所成角的正弦值.
21.已知函数.
(1)若,证明:当时,;
(2)若在只有一个零点,求.
22.[选修4-4:坐标系与参数方程]
在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).
(1)求和的直角坐标方程;
(2)若曲线截直线所得线段的中点坐标为,求的斜率.
23.[选修4-5:不等式选讲]
设函数.
(1)当时,求不等式的解集;
(2)若,求的取值范围.
快乐
快乐
参考答案
1.D
【解析】分析:根据复数除法法则化简复数,即得结果.
详解:选D.
点睛:本题考查复数除法法则,考查学生基本运算能力.
2.A
【解析】分析:根据枚举法,确定圆及其内部整点个数.
详解: ,
当时,;
当时,;
当时,;
所以共有9个,选A.
点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.
3.B
【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.
详解:为奇函数,舍去A,
舍去D;
,
所以舍去C;因此选B.
点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.
4.B
【解析】分析:根据向量模的性质以及向量乘法得结果.
详解:因为
所以选B.
点睛:向量加减乘:
显示全部