大学物理化学知识点归纳_精品.doc
文本预览下载声明
第一章 气体的pvT关系
理想气体状态方程
pV=(m/M))RT
pV=mRT/Mmix (1.4)
式中Mmix为混合物的摩尔质量,其可表示为
MmixMB (1.5) Mmix=m/n= / (1.6)
式中MB为混合物中某一种组分B的摩尔质量。以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。
2.道尔顿定律
pB=nBRT/V=yBp (1.7)
P= (1.8)
理想气体混合物中某一种组分B的分压等于该组分单独存在于混合气体的温度T及总体积V的条件下所具有的压力。而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。
3.阿马加定律
VB*=nBRT/p=yBV (1.9)
V=∑VB* (1.10)
VB*表示理想气体混合物中物质B的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。
三、临界参数
每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以Tc或tc表示。我们将临界温度Tc时的饱和蒸气压称为临界压力,以pc表示。在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积,以Vm,c表示。临界温度、临界压力下的状态称为临界状态。
四、真实气体状态方程
1.范德华方程
(p+a/Vm2)(Vm-b)=RT (1.11)
或(p+an2/V2)(V-nb)=nRT (1.12)
上述两式中的a和b可视为仅与气体种类有关而与温度无关的常数,称为范德华常数。a的单位为Pa·m6·mol,b的单位是m3mol.-1。该方程适用于几个兆帕气压范围内实际气体p、V、T的计算。
2.维里方程
Z(p,T)=1+Bp+Cp+Dp+… (1.13)
或Z(Vm, ,T)=1+B/Vm+C / Vm2 +D/ Vm3 +… (1.14)
上述两式中的Z均为实际气体的压缩因子。比例常数B’,C’,D’…的单位分别为Pa-1,Pa-2,Pa-3…;比例常数B,C,D…的单位分别为摩尔体积单位[Vm]的一次方,二次方,三次方…。它们依次称为第二,第三,第四
显示全部