文档详情

备战2010高考数学压轴题全训练.doc

发布:2017-03-30约6.89千字共10页下载文档
文本预览下载声明
备战2010高考数学――压轴题跟踪演练系列五 1.(本小题满分14分) 已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足 (Ⅰ)设为点P的横坐标,证明; (Ⅱ)求点T的轨迹C的方程; (Ⅲ)试问:在点T的轨迹C上,是否存在点M, 使△F1MF2的面积S=若存在,求∠F1MF2 的正切值;若不存在,请说明理由. 本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分. (Ⅰ)证法一:设点P的坐标为 由P在椭圆上,得 由,所以 ………………………3分 证法二:设点P的坐标为记 则 由 证法三:设点P的坐标为椭圆的左准线方程为 由椭圆第二定义得,即 由,所以…………………………3分 (Ⅱ)解法一:设点T的坐标为 当时,点(,0)和点(-,0)在轨迹上. 当|时,由,得. 又,所以T为线段F2Q的中点. 在△QF1F2中,,所以有 综上所述,点T的轨迹C的方程是…………………………7分 解法二:设点T的坐标为 当时,点(,0)和点(-,0)在轨迹上. 当|时,由,得. 又,所以T为线段F2Q的中点. 设点Q的坐标为(),则 因此 ① 由得 ② 将①代入②,可得 综上所述,点T的轨迹C的方程是……………………7分 (Ⅲ)解法一:C上存在点M()使S=的充要条件是 由③得,由④得 所以,当时,存在点M,使S=; 当时,不存在满足条件的点M.………………………11分 当时,, 由, , ,得 解法二:C上存在点M()使S=的充要条件是 由④得 上式代入③得 于是,当时,存在点M,使S=; 当时,不存在满足条件的点M.………………………11分 当时,记, 由知,所以…………14分 2.(本小题满分12分) 函数在区间(0,+∞)内可导,导函数是减函数,且 设 是曲线在点()得的切线方程,并设函数 (Ⅰ)用、、表示m; (Ⅱ)证明:当; (Ⅲ)若关于的不等式上恒成立,其中a、b为实数, 求b的取值范围及a与b所满足的关系. 本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合的思想判断函数之间的大小关系.考查学生的学习能力、抽象思维能力及综合运用数学基本关系解决问题的能力.满分12分 (Ⅰ)解:…………………………………………2分 (Ⅱ)证明:令 因为递减,所以递增,因此,当; 当.所以是唯一的极值点,且是极小值点,可知的 最小值为0,因此即…………………………6分 (Ⅲ)解法一:,是不等式成立的必要条件,以下讨论设此条件成立. 对任意成立的充要条件是 另一方面,由于满足前述题设中关于函数的条件,利用(II)的结果可知,的充要条件是:过点(0,)与曲线相切的直线的斜率大于,该切线的方程为 于是的充要条件是…………………………10分 综上,不等式对任意成立的充要条件是 ① 显然,存在a、b使①式成立的充要条件是:不等式 ② 有解、解不等式②得 ③ 因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分 (Ⅲ)解法二:是不等式成立的必要条件,以下讨论设此条件成立. 对任意成立的充要条件是 ………………………………………………………………8分 令,于是对任意成立的充要条件是 由 当时当时,,所以,当时,取最小值.因此成立的充要条件是,即………………10分 综上,不等式对任意成立的充要条件是 ① 显然,存在a、b使①式成立的充要条件是:不等式 ② 有解、解不等式②得 因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分 3.(本小题满分12分) 已知数列的首项前项和为,且 (I)证明数列是等比数列; (II)令,求函数在点处的导数并比较与的大小. 解:由已知可得两式相减得 即从而当时所以又所以从而 故总有,又从而即数列是等比数列; (II)由(I)知 因为所以 从而= =-= 由上-= =12① 当时,①式=0所以; 当时,①式=-12所以 当时, 又 所以即①从而
显示全部
相似文档