文档详情

数据结构》课件C语言05.ppt

发布:2017-07-29约字共91页下载文档
文本预览下载声明
* Ci从0开始是C语言约定 十字链表的一般表示形式 结点的一般形式 其中row,col,val表示非零元的三元组,即非零元所在的行、列和值,down链域指向同列中下一个非零元素,right链域指向同行中下一个非零元素。 十字链表的形式描述 typedef struct matnode{ int row,col; matnode *right,*down; elemtype e; } matnode, *matlist; typedef struct { matlist *chead, *rhead; //指针 int mu, nu, tu; //行、列、非零元个数 } CrossList; row col val down right ? 十字链表 示例 设 3 0 0 5 0 -1 0 0 2 0 0 0 , 则可给出如下之矩阵M的十字链表结构 M= ? 十字链表 1 1 3 1 4 5 ^ ^ 2 2 -1 ^ ^ 3 1 2 ^ ^ ^ m.chead m.rhead 在稀疏矩阵的十字链表中 1)同一行非零元素通过right域链接成一个链表; 2)同一列非零元素通过down域链接成一个链表; 十字链表的另一形式描述 struct matnode{ int row,col; matnode *right,*down; union{ matnode *headnode; elemtp element; }; } ? 十字链表 3 4 0 0 0 0 0 0 0 0 0 0 1 1 3 1 4 5 0 0 2 2 -1 0 0 3 1 2 0 0 hm H1 H2 H3 H4 H3 H1 H2 H4 j=1 2 3 4 (4) 3 2 i=1 3 0 0 5 0 -1 0 0 2 0 0 0 ? 十字链表 算法思想 设A`=A+B,则和矩阵A`中的非零元a`ij: 令A A+B,并设pa,pb分别指向A和B的十字链表中同行的两个结点,整个运算从矩阵的第一行起逐行进行。一共有四种情况: 1. pa,pb同列,且pa-val+pb-val≠0,则有 pa-val=pa-val +pb-val; 2. pa,pb同列,且pa-val+pb-val=0,则删除 pa所指结点(需改变同一行中前一结点的right域值,以及同一列中前一结点的down域值;) ? 十字链表——稀疏矩阵的相加 3. pa-colpb-col,且pa-col≠0,则将pa右移指向下一个位置; 4. pa-colpb-col,或pa-col=0,则需在A的链表中插入一个值为bij的新结点。这里pa-col=0表示A的这一行中非零元素已处理完,或者这一行根本没有非零元素。 ? 十字链表——稀疏矩阵的相加 广义表的概念 广义表(Lists,又称列表)是线性表的推广。在以前所述的线性表(即n≥0个元素a1,a2,···,an的有限序列)中,线性表的元素仅限于诸如数、字符、记录等。若放松对表元素的这种限制,容许它们具有其自身的结构,这样就形成了广义表。 所谓广义表是指由零个或多个单个元素或子表所组成的有限序列。 ? 广义表的逻辑结构 广义表的定义 定义 一个长度为n(n≥0)的广义表是一种数据结构 Lists=(D,R) 其中 D={di|i=1,2,···,n, n≥0,且 di∈D0或di∈Lists} (用到了递归) D0为某个数据对象 R={LR} LR={di-1,di | di-1,di∈D,2≤i≤n} 广义表一般记作 LS=(d1,d2, ···dn) 其中LS是广义表(d1,d2, ···dn)的名字,n为其表的长度。 若di是个广义表,则称它为广义表LS的子表。 ? 广义表的逻辑结构 广义表
显示全部
相似文档