【高考解码】2016届高三数学二轮复习(新课标)第一部分:专题七概率与统计(文)(含解析).doc
文本预览下载声明
第1讲 统计与统计案例
1.(2014·重庆高考)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )
A.100 B.150
C.200 D.250
2.(2015·湖北高考)已知变量x和y满足关系y=-0.1x+1,变量y与z正相关,下列结论中正确的是( )
A.x与y正相关,x与z负相关
B.x与y正相关,x与z正相关
C.x与y负相关,x与z负相关
D.x与y负相关,x与z正相关
3.(2015·安徽高考)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( )
A.8 B.15
C.16 D.32
4.(2015·广东高考)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?
1.(2015·四川高考)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )
A.抽签法 B.系统抽样法
C.分层抽样法 D.随机数法
2.(2015·北京高考)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )
类别 人数 老年教师 900 中年教师 1 800 青年教师 1 600 合计 4 300 A.90 B.100
C.180 D.300
3.(2014·湖南高考)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2p3 B.p2=p3p1
C.p1=p3p2 D.p1=p2=p3
【典例1】 (2014·课标高考)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125) 频数 6 26 38 22 8 (1)在下表中作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?
[一题多变]
本例已知条件不变,试求这种产品质量指标值的众数和中位数.
[针对训练]
(2014·广东高考)某车间20名工人年龄数据如下表:
年龄(岁) 工人数(人) 19 1 28 3 29 3 30 5 31 4 32 3 40 1 合计 20 (1)求这20名工人年龄的众数与极差;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.
命题角度一 线性回归直线方程的应用
【典例2】 (2015·重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y(千亿元) 5 6 7 8 10 (1)求y关于t的回归方程=t+;
(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程=t+中,
=,=-.
命题角度二 独立性检验思想的应用
【典例3】 (2014·辽宁高考)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 不喜欢甜品 合计 南方学生 60 20 80 北方学生 10 10 20 合计 70 30 100 (1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其
显示全部