文档详情

The Basics of Structural Equation Modeling (结构方程建模的基础知识).pdf

发布:2017-08-29约7.37万字共19页下载文档
文本预览下载声明
The Basics of Structural Equation Modeling Diana Suhr, Ph.D. University of Northern Colorado Abstract Structural equation modeling (SEM) is a methodology for representing, estimating, and testing a network of relationships between variables (measured variables and latent constructs). This tutorial provides an introduction to SEM including comparisons between “traditional statistical” and SEM analyses. Examples include path analysis/ regression, repeated measures analysis/latent growth curve modeling, and confirmatory factor analysis. Participants will learn basic skills to analyze data with structural equation modeling. Rationale Analyzing research data and interpreting results can be complex and confusing. Traditional statistical approaches to data analysis specify default models, assume measurement occurs without error, and are somewhat inflexible. However, structural equation modeling requires specification of a model based on theory and research, is a multivariate technique incorporating measured variables and latent constructs, and explicitly specifies measurement error. A model (diagram) allows for specification of relationships between variables. Purpose The purpose of this tutorial is to provide participants with basic knowledge of structural equation modeling methodology. The goals are to present a powerful, flexible and comprehensive technique for investigating relationships between measured variables and latent constructs and to challenge participants to design and plan research where SEM is an appropriate analysis tool. Structural equation modeling (SEM) • is a comprehensive statistical approach to testing hypotheses about relations among observed and latent variables (Hoyle,
显示全部
相似文档