文档详情

最小生成与树算法及应用 .ppt

发布:2017-10-03约4.1千字共11页下载文档
文本预览下载声明
最小生成树算法及应用 最小生成树算法及应用 最小生成树算法及应用 最小生成树算法及应用 最小生成树算法及应用 最小生成树算法及应用 最小生成树算法及应用 最小生成树算法及应用 最小生成树算法及应用 最小生成树算法及应用 最小生成树算法及应用 * * 一、生成树的概念 若图是连通的无向图或强连通的有向图,则从图中任意一个顶点出发调用一次bfs或dfs后,便可以系统地访问图中所有顶点;若图是有根的有向图,则从根出发通过调用一次dfs或bfs,亦可系统地访问所有顶点。在这种情况下,图中所有顶点加上遍历过程中经过的边所构成的子图,称为原图的生成树。 对于不连通的无向图和不是强连通的有向图,若有根或者从根外的任意顶点出发,调用一次bfs或dfs后,一般不能系统地访问所有顶点,而只能得到以出发点为根的连通分支(或强连通分支)的生成树。要访问其它顶点,还需要从没有访问过的顶点中找一个顶点作为起始点,再次调用bfs或dfs,这样得到的是生成森林。 由此可以看出,一个图的生成树是不唯一的,不同的搜索方法可以得到不同的生成树,即使是同一种搜索方法,出发点不同亦可导致不同的生成树。 可以证明:具有n个顶点的带权连通图,其对应的生成树有n-1条边。 二、求图的最小生成树算法 严格来说,如果图G=(V,E)是一个连通的无向图,则把它的全部顶点V和一部分边E’构成一个子图G’,即G’=(V, E’),且边集E’能将图中所有顶点连通又不形成回路,则称子图G’是图G的一棵生成树。 对于带权连通图,生成树的权即为生成树中所有边上的权值总和,权值最小的生成树,称为图的最小生成树。 求图的最小生成树具有很高的实际应用价值,比如下面的这个例题。 例1、城市公交网 [问题描述] 有一张城市地图,图中的顶点为城市,无向边代表两个城市间的连通关系,边上的权为在这两个城市之间修建高速公路的造价,研究后发现,这个地图有一个特点,即任一对城市都是连通的。现在的问题是,要修建若干高速公路把所有城市联系起来,问如何设计可使得工程的总造价最少。 ? [输入] n(城市数,1=n=100); e(边数); 以下e行,每行3个数i,j,wij,表示在城市i,j之间修建高速公路的造价。 ? [输出] n-1行,每行为两个城市的序号,表明这两个城市间建一条高速公路。 [举例] 下面的图(A)表示一个5个城市的地图,图(B)、(C)是对图(A)分别进行深度优先遍历和广度优先遍历得到的一棵生成树,其权和分别为20和33,前者比后者好一些,但并不是最小生成树,最小生成树的权和为19。 [问题分析] 出发点:具有n个顶点的带权连通图,其对应的生成树有n-1条边! 那么选哪n-1条边呢? 设图G的度为n,G=(V,E) 我们介绍两种基于贪心的算法,Prim算法和Kruskal算法。 1、用Prim算法求最小生成树的思想如下: ①设置一个顶点的集合S和一个边的集合TE,S和TE的初始状态均为空集; ②选定图中的一个顶点K,从K开始生成最小生成树,将K加入到集合S; ③重复下列操作,直到选取了n-1条边: 选取一条权值最小的边(X,Y),其中X∈S,not (Y∈S); 将顶点Y加入集合S,边(X,Y)加入集合TE; ④得到最小生成树T =(S,TE) 。 如何证明Prim算法的正确性呢?提示:用反证法。 因为操作是沿着边进行的,所以数据结构宜采用边集数组表示法。 ① 从文件中读入图的邻接矩阵g; ② 边集数组elist初始化; For i:=1 To n-1 Do Begin elist[i].fromv:=1;elist[i].endv:=i+1;elist[i].weight:=g[1,i+1]; End; ③ 求出最小生成树的n-1条边; For k:=1 To n-1 Do Begin min:=maxint;m:=k; For j:=k To n-1 Do {查找权值最小的一条边} If elist[j].weightmin Then Begin min:=elist[j].weight;m:=j;End; If mk Then Begin t:=elist[k];elist[k]:=elist[m];elist[m]:=t;End; {把权值最小的边调到第k个单元} j:=eli
显示全部
相似文档