文档详情

第五节 蛋白质的结构和功能.ppt

发布:2017-08-12约6.11千字共66页下载文档
文本预览下载声明
第六章 蛋白质的结构和功能 主要内容 蛋白质与配体的可逆结合——肌红蛋白与血红蛋白 蛋白质与配体结合的空间互补性——免疫球蛋白 化学能对蛋白质相互作用的影响——肌球蛋白与肌动蛋白 1、肌红蛋白 肌红蛋白(myoglobin,Mb)是哺乳动物细胞主要是肌细胞贮存和分配氧的蛋白质。 肌红蛋白是由一条多肽链和一个辅基血红素构成,相对MW=16700,由153个AA残基。除去血红素的脱辅基肌红蛋白称为珠蛋白。 肌红蛋白的结构 1、肌红蛋白的三级结构 (1)长短不同的8条α- 螺旋组成; (2)80%AA处于螺旋中 (3)拐弯处为无规卷曲 (4)肌红蛋白中4个Pro 各处于四个拐弯处; (5)分子十分紧密,仅 能容纳4个水分子; (6)亲水外部疏水内部 肌红蛋白的结构 2、辅基血红素 Fe原子被称为原卟啉IX(9)的有机分子固定的,共称血素(Heme),使血液呈红色。Fe有六个配位键,其中四个与卟啉的吡咯环的N原子相连。Fe2+称亚铁血红素,Fe3+为高铁血红素,只有Fe2+的蛋白才能结合氧 3、氧与肌红蛋白的结合 —Fe2+与珠蛋白的93位(F8)His的咪唑基N相连; —当形成氧合肌红蛋白(oxy-myoglobin)时,第6个配位键与氧结合; —当成高铁肌红蛋白时,第6配位键被H2O分子占据; —在氧结合一侧有一E7 His氧结合部位形成空间位阻区 肌红蛋白与氧的结合 Mb多肽微环境的作用 固定血红素基。 保护血红素铁免遭氧化。 为氧分子提供一个合适的结合部位。 氧的结合改变了肌红蛋白的构型 肌红蛋白血红素与氧结合后,铁原子从离卟啉环平面上方0.055nm处,被拉到离卟啉环平面上方0.026nm处。这对Mb生物功能并没有影响,但会影响Hb的性质。 肌红蛋白氧合曲线 肌红蛋白氧合曲线 肌红蛋白氧合曲线 肌红蛋白氧合曲线 2 血红蛋白 血红蛋白的结构 ◇ Hb分子近似球形;M.W.=68 000 ◇ Hb由四个亚基组成(二条α亚基和二条β亚基); ◇ α亚基(141aa)比β亚基(146aa)短,但都比肌红蛋白链(153aa)短;这主要是因为末端H螺旋比较短; ◇ 4个血红素分别位于四条多肽链的E和F螺旋之间的裂隙处,并暴露于分子表面。 ◇ Hb- α和Hb- β及Mb虽然三级结构相似,但其氨基酸序列却有很大的不同,约只有27个位置是相同的。 血红蛋白4个血红素基分别位于每个多肽链的E和F螺旋之间的裂隙处,并暴露在分子的表面。 氧结合引起的血红蛋白构象变化 氧合作用显著改变血红蛋白的四级结构。 氧结合引起的血红蛋白构象变化 血红素铁0.039nm的微小位移导致血红蛋白构象的改变。 氧合血红蛋白和去氧血红蛋白代表不同的构象态。(T态和R态) 氧合导致稳定T态的离子键和盐桥的断裂,血红蛋白的氧结合过程是一协同过程。 Hb的氧结合曲线 血红蛋白是目前了解最清楚的别构蛋白质,血红蛋白的氧合具有正协同效应,即一个O2的结合会增加同一分子中其余空的氧结合部位对O2的亲和力。Hb的氧合曲线呈S形而非双曲线形。每个血红蛋白分子有4个血红素,因此最多只能结合4分子氧,现假定O2与Hb的结合是“全或无”的现象。 Hb的氧结合曲线 ◇ 肺泡中pO2=100torr, YO2=0.97 ◇ 毛细管中pO2=20torr, YO2=0.25 ◇ Hb P50=26torr ◇ Hb 0.97-0.25=0.72 Mb 0.97-0.89=0.08 ◇ 协同效应增加血红蛋白在肌肉中卸O2效率。 H+、CO2和BPG对血红蛋白结合氧的影响 血红蛋白与O2的结合受环境中其他分子的影响,如H+、CO2和BPG等。虽然它们在蛋白质分子上的结合部位离血红素基很远,但这些分子极大的影响血红蛋白的氧合性质。这种空间上相隔的部位之间的相互作用就是别构效应(allosteric effect)。 H+和CO2促进O2的释放(Bohr效应) pH下降时,Hb的氧饱和曲线向右移动。这种pH对血红蛋白对氧的亲和力的影响被称为Bohr效应。 Bohr效应生理意义: 当血液流经肌肉时,这里的pH较低,CO2浓度较高,因此有利于血红蛋白释放O2,使组织能比因单纯氧分压降低获得更多的氧,但同时氧的释放又促使血红蛋白与H+和CO2结合,以补偿组织呼吸引起的pH降低;当血液流经肺时,由于氧分压高有利于血红蛋白与氧的结合因此而促进了H+和CO2的释放,同时CO2的呼出又有利于氧合血红蛋白的生成。 BPG降低Hb对O2的亲和力 BPG是Hb的一个重要别构效应物。Hb四聚体分子只有一个BPG结合部位,位于由四个亚基缔合形成的中央孔穴内。 BPG和两个β链之间的离子键有助于稳定去氧形式(T态)的血红蛋白构象
显示全部
相似文档