基于XCS与LS-SVM的ALV在狭隘环境中的避碰规划.pdf
文本预览下载声明
Artificial Intelligence and Robotics Research 人工智能与机器人研究, 2017, 6(1), 22-30
Published Online February 2017 in Hans. /journal/airr
/10.12677/airr.2017.61004
Research on Obstacle Avoidance
Planning for ALV Based on XCS in
Narrow Environments
Jie Shao1,2, Qingzhen Wang1
1
Department of Computer Science, Zhengzhou College of Science Technology, Zhengzhou Henan
2
School of Computer Science, Nanjing University of Science and Technology, Nanjing Jiangsu
th th th
Received: Jan. 27 , 2017; accepted: Feb. 11 , 2017; published: Feb. 16 , 2017
Abstract
Local obstacle avoidance in dynamic narrow environments, as a principal ability for ALV, plays an
important role in autonomous navigation. Due to premature convergence, local optimal solution,
accounting for a larger storage space and other shortcomings of genetic algorithms still exist. In
order to improve the ability of obstacle avoidance for ALV, this paper presents a path obstacle
avoidance planning method based on LCS for ALV in narrow environments, designs and improves
special Genetic Operators. Different environments of simulation results showed that the combina-
tion of LS-SVM and learning classifier for ALV path obstacle avoidance planning was convergent,
increasing ALV’s ability to quickly find safe paths in narrow environments.
Keywords
Obstacle Avoidance Planning, LS-SVM, Autonomous Land Vehicle (ALV), Accuracy-Based Learning
Classifier System (XCS), Genetic Algorithm
基于XCS和LS-SVM的ALV在狭隘环境中的
避碰规划
1,2 1
邵 杰 ,王清珍
1郑州科技学院信息工程学院,河南 郑州
2南京理工大学计算机学院,江苏 南京
收稿日期:2017年1月27 日;录用日期:2017年2月11 日;发布日期:2017年2月16 日
文章引用: 邵杰, 王清珍. 基于XCS 和LS-SVM 的ALV 在狭隘环境中的避碰规划[J].
显示全部