数字信号课后题目答案摘选.doc
文本预览下载声明
4. 对题1图给出的x(n)要求: (1) 画出x(-n)的波形; (2) 计算xe(n)= [x(n)+x(-n)], 并画出xe(n)波形; (3) 计算xo(n)= [x(n)-x(-n)], 并画出xo(n)波形; (4) 令x1(n)=xe(n)+xo(n), 将x1(n)与x(n)进行比较, 你能得到什么结论?
解:(1) x(-n)的波形如题4解图(一)所示。
(2) 将x(n)与x(-n)的波形对应相加, 再除以2, 得到xe(n)。 毫无疑问, 这是一个偶对称序列。 xe(n)的波形如题4解图(二)所示。
(3) 画出xo(n)的波形如题4解图(三)所示。
(4) 很容易证明:
x(n)=x1(n)=xe(n)+xo(n)
上面等式说明实序列可以分解成偶对称序列和奇对称序列。 偶对称序列可以用题中(2)的公式计算, 奇对称序列可以用题中(3)的公式计算。
5. 设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统输入和输出, 判断系统是否是线性非时变的。
(1)y(n)=x(n)+2x(n-1)+3x(n-2)
(2)y(n)=2x(n)+3
(3)y(n)=x(n-n0) n0为整常数
(4)y(n)=x(-n)
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
(8)y(n)=x(n)sin(ωn)
解: (1) 令输入为
x(n-n0)
输出为
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2)
y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
=y′(n)
故该系统是非时变系统。 因为
y(n)=T[ax1(n)+bx2(n)]
=ax1(n)+bx2(n)+2[ax1(n-1)+bx2(n-1)]
+3[ax1(n-2)+bx2(n-2)]
T[ax1(n)]=ax1(n)+2ax1(n-1)+3ax1(n-2)
T[bx2(n)]=bx2(n)+2bx2(n-1)+3bx2(n-2)
所以
T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)]
故该系统是线性系统。
(2) 令输入为
x(n-n0)
输出为
y′(n)=2x(n-n0)+3
y(n-n0)=2x(n-n0)+3=y′(n)
故该系统是非时变的。 由于
T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3
T[ax1(n)]=2ax1(n)+3
T[bx2(n)]=2bx2(n)+3
T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)]
故该系统是非线性系统。
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
x(n-n1)
输出为
y′(n)=x(n-n1-n0)
y(n-n1)=x(n-n1-n0)=y′(n)
故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0)
=aT[x1(n)]+bT[x2(n)]
故延时器是线性系统。
(4) y(n)=x(-n)
令输入为
x(n-n0)
输出为
y′(n)=x(-n+n0)
y(n-n0)=x(-n+n0)=y′(n)
因此系统是线性系统。 由于
T[ax1(n)+bx2(n)]=ax1(-n)+bx2(-n)
=aT[x1(n)]+bT[x2(n)]
因此系统是非时变系统。
(5) y(n)=x2(n)
令输入为
x(n-n0)
输出为
y′(n)=x2(n-n0)
y(n-n0)=x2(n-n0)=y′(n)
故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=[ax1(n)+bx2(n)]2
≠aT[x1(n)]+bT[x2(n)]
=ax21(n)+bx22(n)
因此系统是
显示全部