高考数学学习课件第一轮.1067空间角、距离综合.doc
文本预览下载声明
g3.1067空间角.空间距离综合
一:高考真题:
1.(2003京春文11,理8)如图9—1,在正三角形ABC中,D,E,F分别为各边的中点,G,H,I,J分别为AF,AD,BE,DE的中点.将△ABC沿DE,EF,DF折成三棱锥以后,GH与IJ所成角的度数为( )
A.90° B.60°
C.45° D.0°
2.(2002全国理,8)正六棱柱ABCDEF—A1B1C1D1E1F1的底面边长为1,侧棱长为,则这个棱柱的侧面对角线E1D与BC1所成的角是( )
A.90° B.60° C.45° D.30°
3.(2001全国,11)一间民房的屋顶有如图9—4三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1、P2、P3.
图9—4
若屋顶斜面与水平面所成的角都是α,则( )
A.P3>P2>P1 B.P3>P2=P1
C.P3=P2>P1 D.P3=P2=P1
4.(2001全国,9)在正三棱柱ABC—A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为( )
A.60° B.90° C.105° D.75°
5.(2000全国文,12)如图9—5,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成相等的两部分,则母线与轴的夹角的余弦值为( )
A. B.
C. D.
6.(1995全国文,10)如图9—7,ABCD—A1B1C1D1是正方体,B1E1=D1F1=,则BE1与DF1所成角的余弦值是( )
A. B.
C. D.
7.(2003上海春,10)若正三棱锥底面边长为4,体积为1,则侧面和底面所成二面角的大小等于 (结果用反三角函数值表示).
8.(2002京皖春,15)正方形ABCD的边长是2,E、F分别是AB和CD的中点,将正方形沿EF折成直二面角(如图9—11所示).M为矩形AEFD内一点,如果∠MBE=∠MBC,MB和平面BCF所成角的正切值为,那么点M到直线EF的距离为 .
9.(2002上海,4)若正四棱锥的底面边长为2 cm,体积为4 cm3,则它的侧面与底面所成的二面角的大小是 .
10.(2000上海春,8)如图9—13,∠BAD=90°的等腰直角三角形ABD与正三角形CBD所在平面互相垂直,E是BC的中点,则AE与平面BCD所成角的大小为_____.
11.(2003京春文,19)如图9—19,ABCD—A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点.
(Ⅰ)求三棱锥D1—DBC的体积;
(Ⅱ)证明BD1∥平面C1DE;
(Ⅲ)求面C1DE与面CDE所成二面角的正切值.
图9—19 图9—20
12.(2003京春理,19)如图9—20,正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4.E,F分别为棱AB,BC的中点,EF∩BD=G.
(Ⅰ)求证:平面B1EF⊥平面BDD1B1;
(Ⅱ)求点D1到平面B1EF的距离d;
(Ⅲ)求三棱锥B1—EFD1的体积V.
13.(2002京皖春文,19)在三棱锥S—ABC中,∠SAB=∠SAC=
∠ACB=90°,且AC=BC=5,SB=5.(如图9—21)
(Ⅰ)证明:SC⊥BC;
(Ⅱ)求侧面SBC与底面ABC所成二面角的大小;
(Ⅲ)求三棱锥的体积VS-ABC.
14.(2002全国理,18)如图9—26,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<).
(Ⅰ)求MN的长;
(Ⅱ)当a为何值时,MN的长最小;
(Ⅲ)当MN长最小时,求面MNA与面MNB所成的二面角α的大小.
图9—26 图9—27
15.(2001春季北京、安徽,19)如图9—27,已知VC是△ABC所在平面的一条斜线,点N是V在平面ABC上的射影,且在△ABC的高CD上.AB=a,VC与AB之间的距离为h,点M∈VC.
(Ⅰ)证明∠MDC是二面角M—AB—C的平面角;
(Ⅱ)当∠MDC=∠CVN时,证明VC⊥平面AMB;
(Ⅲ)若∠MDC=∠CVN=θ(0<θ<=,求四面体MABC的体积.
●答案解析
1.答案:B
解析:将三角形折成三棱锥如图9—43所示.HG与IJ为一对异面直线.过点D分别作HG与IJ的平行线,即DF与AD.所以∠ADF即为所求.因此,HG与IJ所成角为60°.
评述:本题通过对折叠问题处理考查空间
显示全部