精选圆的例题[含详解].doc
文本预览下载声明
【典型例题】
例1. 爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全?
分析:爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示:
解:
∴点导火索的人非常安全
例2. 已知梯形ABCD内接于⊙O,AB∥CD,⊙O的半径为4,AB=6,CD=2,求梯形ABCD的面积。
分析:要求梯形面积必须先求梯形的高,即弦AB、CD间距离,为此要构造直角三角形利用勾股定理求高。为了便于运用垂径定理,故作OE⊥CD于E,延长EO交AB于F,证OF⊥AB。
此题容易出现丢解的情况,要注意分情况讨论。
解:分两种情况讨论:
(1)当弦AB、CD分别在圆心O的两侧时,如图(1):
过O作OE⊥CD于E,延长EO交AB于F
连OC、OB,则CE=DE
∵AB∥CD,OE⊥CD
∴OF⊥AB,即EF为梯形ABCD的高
在Rt△OEC中,∵EC=1,OC=4
(2)当弦AB、CD在圆心O的同侧时,如图(2):
过O作OE⊥CD于E,交AB于F
以下证法同(1),略。
例3. 如图,已知AB为⊙O的直径,P是OB的中点,求tanC·tanD的值。
分析:为了求tanC·tanD的值,需要分别构造出含有∠C和∠D的两个直角三角形。而AB是直径,为我们寻找直角创造了条件。连BC、BD,则得到Rt△ACB和Rt△ADB。可以发现∠ACD=∠ABD,∠ADC=∠ABC,于是,可以把tanC·tanD转化为
解:连结BC、BD
∵AB是⊙O的直径,∴∠ACB=∠ADB=90°
∵∠ACD=∠ABD,∠ADC=∠ABC
作AE⊥CD于E,作BF⊥CD于F
则△AEC∽△ADB
∴AC·AD=AE·AB
同理,BD·BC=BF·AB
∵△APE∽△BPF
∵P为半径OB的中点
∴tanC·tanD=3
例4.
分析:由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC。
证明:延长DB至点E,使BE=DC,连结AE
∵△ABC是等边三角形
∴∠ACB=∠ABC=60°,AB=AC
∴∠ADB=∠ACB=60°
∵四边形ABDC是圆内接四边形
∴∠ABE=∠ACD
在△AEB和△ADC中,
∴AE=AD
∵∠ADB=60°
∴△AED是等边三角形
∴AD=DE=DB+BE
∵BE=DC
∴DB+DC=DA
说明:本例也可以用其他方法证明。如:
(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA。
(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA。
例5. 如图,已知四边形ABCD内接于⊙O,AB是直径,AD=DC,分别延长BA、CD交于点E,BF⊥EC交EC的延长线于F,若EA=AO,BC=12,求CF的长。
分析:在Rt△CFB中,已知BC=12,求CF,故可寻找与之相似的直角三角形,列比例式求解。
解:连结OD,BD
∴∠ABC=∠AOD
∴OD∥BC
∵EA=AO,∴EA=AO=BO
∴AB=16,BE=24
∵四边形ABCD内接于⊙O
∴∠EDA=∠EBC
∵∠E是公共角
∴△EDA∽△EBC
设AD=DC=x,ED=y,则有
∵AB为⊙O的直径
∴∠ADB=∠F=90°
又∠DAB=∠FCB
∴Rt△ADB∽Rt△CFB
说明:与圆有关的问题,大都与相似三角形联系在一起。
此题运用了两次相似三角形,找到线段之间的关系,并且运用了方程的思想解几何问题,这是解几何问题的一种重要方法。
例6. 如图,已知等腰△ABC中,AB=AC,以AB为直径的⊙O分
显示全部