文档详情

初一数学黑板报材料2.doc

发布:2017-03-10约2.17千字共7页下载文档
文本预览下载声明
有一位阿拉伯老人,生前养有11匹马,他去世前立下遗嘱:大儿子、二儿子、小儿子、分别继承遗产的1/2,1/4,1/6。儿子们想来想去没法分:他们所得到的都不是整数,即分别为11/2,11/4,11/6。总不能把一匹马割成几块来分吧? 一、猜一数学名词: 1、 五四三二一 2、 每份一样多 3、 手算 二、打一成语: 1、3/4的倒数 2、1的任意次方 3、103与1002 4、10002=100×100×100 5、2,4,6,8,10 国际象棋发明人的报酬 这是印度的一个古老传说,舍罕王打算重赏象棋发明人:宰相西萨·班·达依尔。这位聪明的大臣的胃口看来并不大,他跪在国王面前说: ‘陛下,请您在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,第三格内给四粒,用这样下去,每一小格内都比前一小格加一倍。陛下,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧!’“爱卿,你所求的并不多啊。”国王说道,心里为自己对这样一件奇妙的发明赏赐的许诺不致破费太多而暗喜。“你当然会如愿以偿的,”国王命令如数付给达依尔。计数麦粒的工作开始了,第一格内放1粒,第二格内放2粒第三格内放2’粒,…还没有到第二十格,一袋麦子已经空了。一袋又一袋的麦子被扛到国王面前来。但是,麦粒数一格接一格飞快增长着,国王很快就看出,即便拿全印度的粮食,也兑现不了他对达依尔的诺言。 原来,所需麦粒总数   1+2+22+23+24+……+263=264-1   =18446744073709551615。  这些麦子究竟有多少?打个比方,如果造一个仓库来放这些麦子,仓库高4米,宽10米,那么仓库的长度就等于地球到太阳的距离的两倍。而要生产这么多的麦子,全世界要两千年。尽管印度舍罕王非常富有,但要这样多的麦子他是怎么也拿不出来的。这么一来,舍罕王就欠了宰相好大一笔债。要么是忍受达依尔没完没了的讨债,要么是干脆砍掉他的脑袋。结果究竟如何,可惜史书上没有记载。 7 答案:张三说假话,王五说假话,而李四是说真话。 答案:聪明的邻居牵来了自己的1匹马,对他们说:“你们看,现在有12匹马了,老大得12匹的1/2,就是6匹中,老二得12匹的1/4就是3匹,老三得12匹的1/6就是2匹,还剩下一匹我照样牵回家去。”        (倒数) (平均数) (指数) (颠三倒四) (始终如一) (千变万化) (千方百计) (无独有偶) 丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?      冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。    真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。   哥德巴赫猜想 大于4的偶数总能写成两个奇素数之和,大于7的奇数总能写成三个奇素数之和。例如:6=3+3,8=5+3,10=5+5,9=3+3+3,11=3+3+5,99=89+7+3,……这是德国数学家哥德巴赫于1742年6月7日给欧拉写的信中提出的问题,6月30日欧拉回信说:“虽然我还不能这个问题,但我确信无疑,认为这是完全正确的定理。”为了摘取这颗明珠,数学家们做了无数次的努力,也取得了一些进展,1973年,中国数学家陈景润发表了一篇论文,轰动了国际数学界,据说离解决这个问题只有一步之隔了,但这一步却有难以想象的艰难。许多数学家认为,要想证明这个问题,很可能必须创造新的方法,以往的路都是走不通的。 1+2+22+23+24+ …+223=   某人卖马一匹,得钱156卢布。但是买主买到马以后又懊悔了,要把马退还给卖主,他说这匹马根本不值这么多钱。于是卖主向买主提出了另一种计算马价的方案说,如果你嫌
显示全部
相似文档