2018年初中数学突破中考压轴题几何模型之正方形的半角模型教案(有答案).doc
文本预览下载声明
1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。
2.掌握正方形的性质定理1和性质定理2。
3.正确运用正方形的性质解题。
4.通过四边形的从属关系渗透集合思想。
5.通过理解四种四边形内在联系,培养学生辩证观点。
正方形的性质
因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,
所以它具有这些图形性质的综合,因此正方形有以下性质(由学生 和老师一起总结)。
正方形性质定理1:正方形的四个角都是直角,四条边相等。
正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。
说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。
小结:
(1)正方形与矩形,菱形,平行四边形的关系如上图
(2)正方形的性质:
①正方形对边平行。
②正方形四边相等。
③正方形四个角都是直角。
④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。
例1.如图,折叠正方形纸片,先折出折痕,再折叠使边与对角线重合,得折痕,使,求.
【解析】:作GM⊥BD,垂足为M.
由题意可知∠ADG=GDM,
则△ADG≌△MDG.
∴DM=DA=2. AC=GM
又易知:GM=BM.
而BM=BD-DM=2-2=2(-1),
∴AG=BM=2(-1).
例2 .如图,为正方形内一点,,并且点到边的距离也等于,求正方形的面积?
【解析】:过作于交于.
设,则,.
由.
可得:.
故.
.
例3. 如图,、分别为正方形的边、上的一点,,垂足为,,则有,为什么?
【解析】:要说明EF=BE+DF,只需说明BE=EM,DF=FM即可,而连结AE、AF.只要能说明△ABE≌△AME,△ADF≌△AMF即可.
理由:连结AE、AF.
由AB=AM,AB⊥BC,AM⊥EF,AE公用,
∴△ABE≌△AME.
∴BE=ME.
同理可得,△ADF≌△AMF.
∴DF=MF.
∴EF=ME+MF=BE+DF.
例4.如下图、分别在正方形的边、上,且,试说明。
【解析】:将△ADF旋转到△ABC,则△ADF≌△ABG
∴AF=AG,∠ADF=∠BAG,DF=BG
∵∠EAF=45°且四边形是正方形,
∴∠ADF﹢∠BAE=45°
∴∠GAB﹢∠BAE=45°
即∠GAE=45°
∴△AEF≌△AEG(SAS)
∴EF=EG=EB﹢BG=EB﹢DF
例5. 如图,在正方形的、边上取、两点,使,于. 求证:
【解析】:欲证 AG=AB,就图形直观来看,
应证Rt△ABE与Rt△AGE全等,但条件不够.
∠EAF=45°怎么用呢?
显然∠1+∠2=45°,若把它们拼在一起,问题就解决了.
【证明】:把 △AFD绕A点旋转90°至△AHB.
∵∠EAF=45°,∴∠1+∠2=45°.
∵∠2=∠3,∴∠1+∠3=45°.
又由旋转所得 AH=AF,AE=AE.
∴ △AEF≌△AEH.
例6.(1) 如图1,在正方形中,点,分别在边,
上,,交于点,.
求证:.
(2) 如图2,在正方形中,点,,,分别在边,
,,上,,交于点,,.
求的长.
已知点,,,分别在矩形的边,,,上,
,交于点,,. 直接写出下列两题的答案:
①如图3,矩形由个全等的正方形组成,求的长;
②如图4,矩形由个全等的正方形组成,求的长(用的代数式表示).
【解析】
(1) 证明:如图1,∵ 四边形ABCD为正方形,
∴ AB=BC,∠ABC=∠BCD=90°,
∴ ∠EAB+∠AEB=90°.
∵ ∠EOB=∠AOF=90°,
∴ ∠FBC+∠AEB=90°,∴ ∠EAB=∠FBC,
∴ △ABE≌△BCF , ∴ BE=CF.
(2) 解:如图2,过点A作AM//GH交BC于M,
过点B作BN//EF交CD于N,AM与BN交于点O/,
则四边形AMHG和四边形BNFE均为平行四边形,
∴ EF=BN,GH=AM,
∵ ∠FOH=90°, AM//GH,EF//BN, ∴ ∠NO/A=90°,
故由(1)得, △ABM≌△BCN, ∴ AM=BN,
∴ GH=EF=4.
(3) ① 8.② 4n.
【双基训练】
1. 如图6,点在线段上,四边形与都是正方形,其边长分别为和,则的面积为_______
显示全部