基于视频的多视角人脸检测与跟踪-模式识别与智能系统专业论文.docx
文本预览下载声明
上海交通大学硕士学位论文
上海交通大学硕士学位论文
上海交通大学硕士学位论文
上海交通大学硕士学位论文
算法,实验结果表明本文的算法对于视频多视角人脸具有较高的
检测率,检测速度快,且鲁棒性高。
(3) 在目标跟踪的基础上,针对多视角人脸跟踪问题,本文研究了基于 粒子滤波的多视觉特征融合,多模型融合跟踪算法,并提出了一 种基于子空间特征模型,结合人脸离线模型并自动进行在线学习 的多视角人脸跟踪算法。在跟踪过程中,算法采用了一种新的自 适应粒子滤波跟踪框架,人脸模型使用子空间特征模型,并对人 脸的五个角度进行特征建模。实验结果表明,该算法能够跟踪多 视角变尺度人脸,并实时分辨人脸姿态,对人脸的旋转,尺度变 化,环境影响不敏感,具有较强的鲁棒性和精确性。
(4) 针对监控人脸识别系统的关键问题,本文研究并实现了最佳正面人 脸识别图像选择算法,包括小波域图像评价算法、基于子空间降 维的姿态估计算法、基于距离的人脸选择算法、基于 SVM 的人脸 分类算法。本文提出了一种新颖的 PTZ 摄像机获取感兴趣区域高 分辨率图像方法,设计实现了一套基于多任务决策融合编程架构 的监控人脸识别系统,进行了研究论证和技术演示。 关键字:多视角人脸检测,人脸图像规范化,多视角人脸跟踪,
子空间特征模型,多模型融合,自适应粒子滤波,在线学习,监控视 频人脸识别
VIDEO-BASED MULTI-VIEW FACE DETECTION AND TRACKING2
ABSTRACT
Multi-view face detection and tracking is a significant aspect in computer vision and pattern recognition research. It is the base of face information processing and plays an important role in face recognition, man-machine interaction, video conference, 3-G mobile communication.
This thesis mainly study on key technologies of video-based multi-view face detection and tracking, including video pre-process technique, multi-view face detection algorithm, face image standardization, multi-view face tracking and the realization of surveillance face recognition system.
The main contribution of this dissertation is listed as follows. (1).Video preprocess algorithm including light compensation, image de-noise and super-resolution algorithm to satisfy the demand of real-time video and surveillance system.
(2).Based on the existent face detection algorithm, the author realizes
2 This thesis is supported by a grant from the National High Technology Research and Development Program of China (863 Program)(No.2007AA01Z164)and National Natural Science Foundation of China(No.
multi-view face detection and proposes face image validation and re-location algorithm using face features and color model.
(3).This paper proposes an innovative algorithm based on sub-space model for robust multi-view face tracking under complex environment.
显示全部