WEKA数据解析实验.doc
文本预览下载声明
WEKA 数据分析实验
实验简介
借助工具Weka 3.6 ,对数据样本进行测试,分类测试方法包括:朴素贝叶斯、决策树、随机数三类,聚类测试方法包括:DBScan,K均值两种;
数据样本
以熟悉数据分类的各类常用算法,以及了解Weka的使用方法为目的,本次试验中,采用的数据样本是Weka软件自带的“Vote”样本,如图:
关联规则 分析
操作步骤:
点击 “Explorer”按钮,弹出“Weka Explorer”控制界面
选择“Associate”选项卡;
点击“Choose”按钮,选择“Apriori”规则
点击参数文本框框,在参数选项卡设置参数如:
点击左侧“Start”按钮
执行结果:
=== Run information ===
Scheme: weka.associations.Apriori -I -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.5 -S -1.0 -c -1
Relation: vote
Instances: 435
Attributes: 17
handicapped-infants
water-project-cost-sharing
adoption-of-the-budget-resolution
physician-fee-freeze
el-salvador-aid
religious-groups-in-schools
anti-satellite-test-ban
aid-to-nicaraguan-contras
mx-missile
immigration
synfuels-corporation-cutback
education-spending
superfund-right-to-sue
crime
duty-free-exports
export-administration-act-south-africa
Class
=== Associator model (full training set) ===
Apriori
=======
Minimum support: 0.5 (218 instances)
Minimum metric confidence: 0.9
Number of cycles performed: 10
Generated sets of large itemsets:
Size of set of large itemsets L(1): 12
Large Itemsets L(1):
handicapped-infants=n 236
adoption-of-the-budget-resolution=y 253
physician-fee-freeze=n 247
religious-groups-in-schools=y 272
anti-satellite-test-ban=y 239
aid-to-nicaraguan-contras=y 242
synfuels-corporation-cutback=n 264
education-spending=n 233
crime=y 248
duty-free-exports=n 233
export-administration-act-south-africa=y 269
Class=democrat 267
Size of set of large itemsets L(2): 4
Large Itemsets L(2):
adoption-of-the-budget-resolution=y physician-fee-freeze=n 219
adoption-of-the-budget-resolution=y Class=democrat 231
physician-fee-freeze=n Class=democrat 245
aid-to-nicaraguan-contras=y Class=democrat 218
Size of set of large itemsets
显示全部