半导体敏化太阳能电池发展面临的突破.doc
文本预览下载声明
半导体敏化太阳能电池的突破
[摘要]半导体敏化太阳能电池在过去数年已引起越来越大的兴趣。这类电池开始时转化效率非常低,现在迅速发展到转化效率达到4-5%。本文从三方面分析了优化提高太阳能电池的性能的途径:(1)材料:不仅包括光吸收材料,也包括电子和空穴导体、对电极材料;(2)通过表面处理来控制电子-空穴复合和能带排列;(3)发展具有增强光捕获和采集性能的纳米复合吸收材料。我们认为这些关键点可以使半导体敏化太阳能电池的设计和发展取得重要突破。
[正文]纳米技术被认为将使工业发生革命性的变化,通过纳米技术降低装置费用和提高效率,可使光电能源费用大大降低,产生显著的经济效益。传统的硅太阳能电池依赖高品质的材料,吸收光之后,产生的载流子将留在相同的材料中直到它们在选择性接触中被提取;为了阻止载流子提取前复合,必须采用高成本的尖端技术。相反,纳米尺度的吸收材料可以迅速把光生载流子分离到两个介质中,对材料品质不需苛刻要求,因此,大大减少了制造费用。吸收材料把光生载流子(电子和空穴)分离到两种介质中的概念,在染料敏化太阳能电池中被详细研究。其中,电池由辅助的纳米结构电子和空穴传输材料构成,染料分子起到吸收剂的作用。
半导体敏化太阳能电池从极低的转化效率迅速发展到接近4-5%。
另一方面,半导体材料构成了控制了能源市场-光伏器件的基础。当这些材料变成纳米尺度时,由于量子限制效应,出现了新的和奇特的性质。此外,块体材料的某些性质,如高吸光系数在在纳米尺度时仍然保留。
半导体量子点(QDs)具有大的固有偶极矩,它们的带隙可以通过尺寸和形状来调节,这一特性为吸光材料的纳米设计提供了一个极好的工具。更为重要的是,半导体量子点或薄膜的生产比块体便宜,它们的合成温度更低,并且可以采用液相方法。从这个意义上说,半导体量子点是发展敏化太阳能电池的优秀材料。
使用半导体作为增敏剂可以追溯到上世纪90年代。然而,直到最近几年,由于很多因素半导体敏化太阳能电池SSC才又被重视:纳米技术的发展使得半导体量子点和薄膜的制备及表征变得容易;染料敏化太阳能电池DSC的许多实验结果可应用到半导体敏化电池。所以,这种器件目前受到越来越多的研究小组重视。
Figure 1. General scheme of a semiconductor-sensitized device. Light generates electron-hole pairs in the semiconductor absorber; the electron is injected in a nanostructured wide band gap semiconductor (i.e., TiO2, ZnO) employed as an electron conductor, and it is transported in this medium to the transparent conductive oxide (TCO) used as a collecting substrate and light window. The semiconductor is regenerated by reducing species in the electrolyte that acts as a hole-transporter medium. Finally, the hole is transported to the counter electrode, where the oxidized counterpart of a redox system is reduced. In a solid-state system, the liquid electrolyte is substituted by a solid hole transporter. The light-harvesting material is a semiconductor that usually takes the form of discrete particles, as represented in this scheme, or a more continuous thin layer. The former can produce quantum confinement
and are usually known as quantum-dot-sensitized solar cells (QDSCs). The latter is commonly known as extremely thin absorber
(eta) solar cells, but the general process
显示全部