2017北京各区初三期末旋转大题.docx
文本预览下载声明
昌平29.如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE.依题意,请在图2中补全图形;如果BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,连接PA,PB,PC,求PA+PB+PC的最小值.小慧的作法是:以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,那么就将PA+PB+PC的值转化为CP+PM+MN的值,连接CN,当点P落在CN上时,此题可解.请你参考小慧的思路,在图3中证明PA+PB+PC=CP+PM+MN.并直接写出当AC=BC=4时,PA+PB+PC的最小值.朝阳28.在Rt△ABC中,∠ACB=90°,O为AB边上的一点,且tanB=,点D为AC边上的动点(不与点A,C重合),将线段OD绕点O顺时针旋转90°,交BC于点E.如图1,若O为AB边中点, D为AC边中点,则的值为 ;(2)若O为AB边中点, D不是AC边的中点,①请根据题意将图2补全;②小军通过观察、实验,提出猜想:点D在AC边上运动的过程中,(1)中 的值不变.小军把这个猜想与同学们进行交流,通过讨论,形成了求的值的几种想法:想法1:过点O作OF⊥AB交BC于点F,要求的值,需证明△OEF∽△ODA .想法2:分别取AC,BC的中点H,G,连接OH,OG,要求的值,需证明△OGE∽△OHD .想法3:连接OC,DE,要求的值,需证C,D,O,E四点共圆.......请你参考上面的想法,帮助小军写出求的值的过程(一种方法即可);(3)若(n≥2且n为正整数),则的值为 (用含n的式子表示).图2图1大兴29.已知:△ABC中,AC=6,BC=8,AB=10,点D是边AB上的一点,过C,D两点的⊙O分别与边CA,CB交于点E,F.(1)若点D是AB的中点,①在图1中用尺规作出一个符合条件的图形(保留作图痕迹,不写作法);②如图2,连结EF,若EF∥AB,求线段EF的长;③请写出求线段EF长度最小值的思路.(2)如图3,当点D在边AB上运动时,线段EF长度的最小值是_________.东城28. 点P是矩形ABCD对角线AC所在直线上的一个动点(点P不与点A,C重合),分别过点A,C向直线BP作垂线,垂足分别为点E,F,点O为AC的中点.(1)如图1,当点P与点O重合时,请你判断OE与OF的数量关系; (2)当点P运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;(3)若点P在射线OA上运动,恰好使得∠OEF=30°时,猜想此时线段CF,AE,OE之间有怎样的数量关系,直接写出结论不必证明.海淀28.在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且.连接PB,试探究PA,PB,PC满足的等量关系.图1 图2(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到,连接,如图1所示.由≌可以证得是等边三角形,再由可得∠APC的大小为 度,进而得到是直角三角形,这样可以得到PA,PB,PC满足的等量关系为 ;(2)如图2,当α=120°时,请参考(1)中的方法,探究PA,PB,PC满足的等量关系,并给出证明;(3)PA,PB,PC满足的等量关系为 .怀柔28.在等边△ABC中,E为BC边上一点,G为BC延长线上一点,过点E作∠AEM=60°,交∠ACG的平分线于点M.(1)如图(1),当点E在BC边的中点位置时,通过测量AE,EM的长度,猜想AE与EM满足的数量关系是 ;(2) 如图(2),小晏通过观察、实验,提出猜想:当点E在BC边的任意位置时,始终有AE=EM.小晏把这个猜想与同学进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:在BA上取一点H使AH=CE,连接EH,要证AE=EM, 只需证△AHE≌△ECM.想法2:找点A关于直线BC的对称点F,连接AF,CF,EF.(易证∠BCF+∠BCA+ACM=180°,所以M,C,F三点在同一直线上)要证AE=EM,只需证ΔMEF为等腰三角形.想法3:将线段BE绕点B顺时针旋转60°,得到线段BF,连接CF,EF,要证AE=EM,只需证四边形MCFE为平行四边形.请你参考上面的想法,帮助小晏证明AE=EM.(一种方法即可)门头沟28.已知在Rt△ABC中,∠ABC=90°,点P是AC的中点.(1)当∠A=30°且点M、N分别在线段AB、BC上时,∠MPN=90°,请在图1中将图形补充完整,并且直接写出PM与PN的比值;(2)当∠A=23°且点M、N分别在线段AB、BC的延长线上时,(1)中的其他条件不变,请写出PM与PN比值的思路.图2图1平谷28.如图,在△ABC中,∠BAC=90°,AB=AC,点D
显示全部