《外文翻译-时域硬约束广义T-S模糊系统的控制方法研究》毕业学术论文.doc
文本预览下载声明
A Dissertation Submitted to Shenyang University of Technology for the Master Degree
时域硬约束广义T-S模糊系统的控制方法研究
STUDY ON CONTROL FOR DESCRIPTOR T-S FUZZY SYSTEMS WITH TIME-DOMAIN CONSTRAINTS
Author:
Major: Control Theory and Contron Engineering
Supervisor:Professo
School
Shenyang University of
Shenyang
摘 要
在实际应用的控制系统中,各种时域上的硬约束条件是广泛存在的。对控制系统的高性能要求,往往意味着需要较大的控制(或/和系统响应)动作,这样就产生了高性能要求和满足时域硬约束之间的矛盾。如果只考虑系统性能,而不考虑时域硬约束,求出的控制量也远远地超出了约束的范围。在这种情况下,就不能保证闭环系统需要的性能,甚至可能会出现系统不稳定的现象。所以说时域硬约束是控制器设计时必须考虑的因素。
本课题针对带有时域硬约束的广义T-S模糊系统,基于广义Lyapunov稳定性理论和椭圆不变域方法,利用线性矩阵不等式(LMIs)技术研究带有时域硬约束的广义T-S模糊系统稳定性问题和控制器设计。针对广义T-S模糊系统本文分别研究了系统的最优控制问题和H∞控制问题。
首先,考虑初始状态非零情况下的广义T-S模糊系统的最优调节问题,将系统输出能量作为优化性能指标,可以得到性能指标和一个系统椭圆不变域共同的上界。广义T-S模糊系统的优化控制就可以通过最小化系统的这个界来实现,同时可以用椭圆不变域方法得到满足时域硬约束的充分条件。
针对约束广义T-S模糊系统,本文还利用状态反馈研究了系统-增益抗干扰问题。先找到一个初始状态所在的椭圆域,并假设外部干扰的能量小于某个界的前提下,再寻另一个包含系统所有可能状态轨迹的椭圆域,这就是所谓的双椭圆域,在能量有界的假设条件下,椭圆域的大小是固定的,因此可以直接得到依赖于这个椭圆域的满足时域硬约束的充分条件并将它转化为线性矩阵不等式。
关键词:广义T-S模糊系统,时域硬约束,椭圆不变域,最优控制,H∞控制,线性矩阵不等式
Abstract
Time-domain hard constraints are probably the most widely existent in practice control systems. It is well recognized that performance requirements for control systems imply large control actions(and/or large system responses).All of these result in the conflict between high performance and satisfaction of time-domain hard constraints. If one ignores
these constraints and only performance is treated, control action will exceed the bounds greatly. In such case, performance of closed-loop system wouldn’t be guaranteed, even of stability. So time-domain hard constraints must be handled in some control system design.
Based on the descriptor Lyapunov theorem and the ellipsoidal invariant sets methods, by using linear matrix inequalities (LMIs), the dissertation studies stability problems and designs of controller for descriptor T-S fuzzy systems with time-domain hard constraints.
In this paper, the optimal regulation problem and control problem for descriptor T-S fuzzy systems have been considere
显示全部