2012高考数学复习最新3年高考2年模拟--坐标系与参数方程.doc
文本预览下载声明
【3年高考2年模拟】第十二章系列4第三节4-4坐标系与参数方程第一部分 三年高考荟萃
一、选择题
1.(安徽理5)在极坐标系中,点的圆心的距离为
(A)2 (B) (C) (D)
【答案】D
2.(北京理3)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是
A. B.
C. (1,0) D.(1,)
【答案】B
3.(天津理11)已知抛物线的参数方程为(为参数)若斜率为1的
直线经过抛物线的焦点,且与圆相切,
则=________.
【答案】
二、填空题
1.(陕西理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评10.分)
C.(坐标系与参数方程选做题)直角坐标系中,以原点为极点,轴的正半轴为极轴建
立极坐标系,设点A,B分别在曲线(为参数)和曲线上,
则的最小值为 。
答案 3
2.(湖南理9)在直角坐标系xOy中,曲线C1的参数方程为(为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为,则C1与C2的交点个数为
【答案】2
3.(江西理15)(1)(坐标系与参数方程选做题)若曲线的极坐标方程为以极点为原点,极轴为轴正半轴建立直角坐标系,则该曲线的直角坐标方程为
【答案】
4.(广东理14)(坐标系与参数方程选做题)已知两曲线参数方程分别为
和,它们的交点坐标为___________.
【答案】
三、简答题
1.(福建理21)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
.
(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
答案 (2)选修4—4:坐标系与参数方程
本小题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想。满分7分。
解:(I)把极坐标系下的点化为直角坐标,得P(0,4)。
因为点P的直角坐标(0,4)满足直线的方程,
所以点P在直线上,
(II)因为点Q在曲线C上,故可设点Q的坐标为,
从而点Q到直线的距离为
,
由此得,当时,d取得最小值,且最小值为
2.(辽宁理23)选修4-4:坐标系统与参数方程
在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标 系中,射线l:θ=与C1,C2各有一个交点.当=0时,这两个交点间的距离为2,当=时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当=时,l与C1,C2的交点分别为A1,B1,当=时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.
解:
(I)C1是圆,C2是椭圆.
当时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3.
当时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1.
(II)C1,C2的普通方程分别为
当时,射线l与C1交点A1的横坐标为,与C2交点B1的横坐标为
当时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此,
四边形A1A2B2B1为梯形.
故四边形A1A2B2B1的面积为 …………10分
3.(全国新课标理23)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.
(I)求的方程;
(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|.
答案 解:(I)设P(x,y),则由条件知M().由于M点在C1上,所以
即
从而的参数方程为
(为参数)
(Ⅱ)曲线的极坐标方程为,曲线的极坐标方程为.
射线与的交点的极径为,
射线与的交点的极径为.
所以.
2010年高考题
1.(2010湖南文)4. 极坐标和参数方程(t为参数)所表示的图形分别是
A. 直线、直
显示全部