华师大版九年级数学下册课后练习锐角三角函数的应用+课后练习二及详解.doc
文本预览下载声明
学科:数学
专题:锐角三角函数的应用
金题精讲
题一:
题面:在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的距地面的高度为1. 6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为? ?A.?4+1.6?m B.?12+1.6?m C.?4+1.6?m D.4m
题面:某海滨浴场东西走向的海岸线可以近似看作直线l(如图)?救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号,他立即沿AB方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙?乙马上从C处入海径直向B处游去?甲在乙入海10秒后赶到海岸线上的D处再向B处游去?若CD=40米B在C的北偏东35°方向甲乙的游泳速度都是2米/秒?问谁先到达B处?请说明理由?(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
满分冲刺
题一:
题面:兴义市进行城区规划,工程师需测某楼AB的高度,工程师在D用高2m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为? ?
A? ?B? ?C? ?D?
题面:水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD?如图所示,已知迎水坡面AB的长为16米,∠B=600,背水坡面CD的长为米,加固后大坝的横截面积为梯形ABED,CE的长为8米?
已知需加固的大坝长为150米,求需要填土石方多少立方米?
求加固后的大坝背水坡面DE的坡度?
题面:如图,小明在坡度为1:2.4的山坡AB上的A处测得大树CD顶端D的仰角为45°,CD垂直于水平面,测得坡面AB长为13米,BC长为9米,A、B、C、D在一个平面内,求树高CD.
题面:小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为? ?
A.米 B.12米 C.米 D.10米
答案:A?
详解:如图,作AK⊥CD于点K,
∵BD=12米,李明的眼睛高AB=1.6米,∠AOE=60°,
∴DB=AK12米,AB=KD=1.6米,∠ACK=60°?
∵,∴?
∴CD=CK+DK=4+1.6=?4+1.6??米??故选A?
答案:乙先到达B处?
详解:由题意得∠BCD=55°,∠BDC=90°?
∵,∴ BD=CD?tan∠BCD=40×tan55°≈57.2?
∵,∴?
∴,
∴
答:乙先到达B处?
满分冲刺
题一:
答案:D?
详解:如图,在Rt△AFG中,,∠AFG=60,
∴?
在Rt△ACG中,,∠ACG=30,
∴?
又∵CF=CG-FG=30,即,解得?
∴?
∴这幢教学楼的高度AB为??m?故选D?
答案:(1)4800立方米; (2).
详解:?1?如图,分别过A、D作AF⊥BC,DG⊥BC,垂点分别为F、G?
在Rt△ABF中,AB=16米,∠B=60°,,
∴,即DG=?
又∵CE=8,∴SDCE?
又∵需加固的大坝长为150,∴需要填方:?
答:需要填土石方立方米?
?2?在Rt△DGC中,DC=,DG=,
∴?∴GE=GC+CE=32?
∴DE的坡度?
答:加固后的大坝背水坡面DE的坡度为?
答案:26米
详解:作AD⊥BC延长线于点D,AE垂直大树点E, ∵山坡AB的坡比为1:2.4,∴=1:2.4,设AD=x,则BD=2.4x,在Rt△ADB中,AD2+BD2=AB2=132,即x2+?2.4x?2=132,解得x=5,则BD=2.4x=12米,∵BC=9米,∴DC=12+9=21米,∵四边形ADCE为矩形,∴AE=DC=21米,∵山坡AB上的A处测得大树CD顶端D的仰角为45°,∴=tan45°,∴DE=AE?tan45°=21米,则DC=ED+EC=21+5=26米.
答案:A.
详解:延长AC交BF延长线于点,则∠CF=30°?
作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4,
∴CE=2,EF=4cos30°=2,
在Rt△CED中,CE=2,
∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4?
∴BD=BF+EF+ED=12+2?
∵△DCE∽△DAB,且CE:DE=1:2,
∴在Rt△ABD中,AB=BD=?故选A
显示全部