文档详情

2018中考数学分类汇编考点21 全等三角形.doc

发布:2018-09-21约1.17万字共30页下载文档
文本预览下载声明
2018中考数学试题分类汇编:考点21 全等三角形 一.选择题(共9小题) 1.(2018?安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD(  ) A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD 【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可. 【解答】解:∵AB=AC,∠A为公共角, A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD; B、如添AD=AE,利用SAS即可证明△ABE≌△ACD; C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD; D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件. 故选:D.   2.(2018?黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是(  ) A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙 【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等. 【解答】解:乙和△ABC全等;理由如下: 在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS, 所以乙和△ABC全等; 在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS, 所以丙和△ABC全等; 不能判定甲与△ABC全等; 故选:B.   3.(2018?河北)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是(  ) A.作∠APB的平分线PC交AB于点C B.过点P作PC⊥AB于点C且AC=BC C.取AB中点C,连接PC D.过点P作PC⊥AB,垂足为C 【分析】利用判断三角形全等的方法判断即可得出结论. 【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意; C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意; D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意, B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意; 故选:B.   4.(2018?南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为(  ) A.a+c B.b+c C.a﹣b+c D.a+b﹣c 【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c; 【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD, ∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°, ∴∠A=∠C,∵AB=CD, ∴△ABF≌△CDE, ∴AF=CE=a,BF=DE=b, ∵EF=c, ∴AD=AF+DF=a+(b﹣c)=a+b﹣c, 故选:D.   5.(2018?临沂)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是(  ) A. B.2 C.2 D. 【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值. 【解答】解:∵BE⊥CE,AD⊥CE, ∴∠E=∠ADC=90°, ∴∠EBC+∠BCE=90°. ∵∠BCE+∠ACD=90°, ∴∠EBC=∠DCA. 在△CEB和△ADC中, , ∴△CEB≌△ADC(AAS), ∴BE=DC=1,CE=AD=3. ∴DE=EC﹣CD=3﹣1=2 故选:B.   6.(2018?台湾)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?(  ) A.115 B.120 C.125 D.130 【分析】根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可. 【解答】解:∵正三角形ACD, ∴AC=AD,∠ACD=∠ADC=∠CAD=60°, ∵AB=DE,BC=AE, ∴△ABC≌△AED, ∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE, ∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°, ∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°, 故选:C.   7.(2018?成都)如图,已知∠AB
显示全部
相似文档