第二章 调Q技术.ppt
文本预览下载声明
调Q(Q开关)技术 两个基本问题: 一、调Q技术的基本概念和基本理论 二、实现调Q技术的方法: 1. 电光调Q ; 2. 声光调Q ; 3. 染料调Q ; 4. 色心晶体调Q; 5. 转镜调Q 。 2.1 概述 三、调Q原理 1. 定义:Q值是评定激光器中光学谐振腔质量好坏的指标----品质因数。Q值--定义为在激光谐振腔内,储存的总能量与腔内单位时间损耗的能量之比。 2.调节Q值的途径 一般采取改变腔内损耗的办法来调节腔内的Q值。 2.3 电光晶体调Q 一、电光晶体调Q原理 1. 电光Q开关原理。 利用晶体的电光效应,在晶体上加一阶跃式电压,调节腔内光子的反射损耗。 (1)第一阶段:积累阶段 例如:采用KDP纵向运用方式,即Z向加电场,Z向通光 第一阶段是在晶体上加 。偏振光通过KDP晶体时分解为沿X和Y方向振动的振幅相等的两束光,两束光的振动方向垂直,频率相同,沿相同方向传播时,其合成的规迹由两光的相位差来决定,当 时,两束光合成为一线偏光,它的振动方向相对入射光的原振动方向旋转90度。因为P1//P2,所以,从晶体出来的光不能通过P2,被P2反射掉。所以光不能在腔内来回传播形成振荡。这就相当于腔内光子的损耗很大,Q值很高,称为“关门”状态。 (2)第二阶段:脉冲形成阶段——Q开关完全打开 在第一阶段工作物质的反转粒子数达到最大值 时,突然退去晶体上的电压,这时晶体又恢复了原来的状态,光在腔内形成振荡 。 (3)激光器的时序关系 电光Q开关的过程由晶体上加一阶跃式电压来完成的。是快开关,因此时序关系同阶跃式Q开关。 (4)电光晶体Q开关的电路 要获得一高峰值功率的窄脉冲,对同步电路的要求是: a .给出可靠的触发信号去点燃氙灯。 b.在点燃氙灯的同时,给出一脉冲信号经过一段延迟时间后,退去晶体上的电压,打开Q开关。延迟时间可靠、准确、可调。 c.退电压要快——开关速度快。 d.晶体上加 电压,要求稳定可调。 e.保证Q开关关的及时。 2.简化的结构: 前面的结构在晶体上加 ,对于KDP来说=10000V,给电路带来不便。腔内插入两个偏振片,增加插入损耗,改进结构。晶体上加 :从YAG来的光通过P变成x(y)方向振动的光,通过KDP时,分成x’(y’)方向振动的光,加 ,两束光的相位差 。出射晶体以后,合成为圆偏光(偏振面旋转45度),这束圆偏光通过全反射后第二次通过KDP,o、e光又得到 相位差——合成为线偏光。线偏光的偏振方向和入射光的偏振方向成90度,或者说光通过KDP两次,o、e光的相位差 ,和前面的结构实际是一样的。 3.无偏振器的Q开关激光器 对于90度生长的红宝石(生长轴和晶体的光轴成90度角)。本身产生的激光是线偏光,因而在调Q时,不需要加偏振器。 4.晶体的运用方式 (1)KDP主要运用纵向方式 (2)KDP横向运用 存在与外加电场无关的自然双折射造成的附加相位差,影响调Q的效果。采用组合的结构可以消除附加相位,但要求加工精度高,使用困难。 (3)LN电光晶体横向应用 二、单块双 电光Q开关 带偏振器的Q开关激光器需加偏振器,使腔内元件增多,因而增加了腔内损耗,降低了调Q效率。把晶体做成双 的形式,使晶体起着偏振、Q开关两个作用,克服了上述Q开关激光器的缺点。 1. Q开关原理 可以分储能和振荡两个阶段讨论它的调Q原理。 2. LN晶体Q开关的误差 有很多原因造成误差,使得在加压时令门“关不死”,在不加压时,有一部分光偏离出腔外,造成输出光降低。原因: (1)晶体在加工时造成的误差。 不够准确,光轴有些偏离。 (2)入射的光束不能严格地垂直入射面等。 (3)入射光有一定的发散角,因此相当于有一部分光束不是垂直入射面入射。 (4)o、e光走的路程不同,因此当 时,o、e光并非完全旋转90度。 3. 双 Q开关的特点 优点: (1)双 电光Q开关可以省去偏振器,适用于产生自然光的YAG、钕玻璃等。一块晶体相当于三个元件。 (2)输出的光是自然光,因此
显示全部