Adjoint Tangent Rank-1 updates.pdf
文本预览下载声明
nstitute of
cientific omputing
IS C
Quasi-Newton methods for nonlinear equations Adjoint Tangent Rank-1 updates Numerical results Conclusions and outlook
Local convergence results of
quasi-Newton methods using the
Adjoint Tangent Rank-1 update
Sebastian Schlenkrich1 Andreas Griewank2
Andrea Walther1
1Institute für Wissenschaftliches Rechnen, Technische Universit?t Dresden
2Institut für Mathematik, Humold Universit?t Berlin
Südostdeutsches Kolloquium 2006,
Martin-Luther-Universit?t Halle-Wittenberg
Supported by DFG grant WA 1607/2-1 and
DFG Research Center MATHEON
nstitute of
cientific omputing
IS C
Quasi-Newton methods for nonlinear equations Adjoint Tangent Rank-1 updates Numerical results Conclusions and outlook
Outline
Quasi-Newton methods for nonlinear equations
Adjoint Tangent Rank-1 updates
Numerical results
Conclusions and outlook
nstitute of
cientific omputing
IS C
Quasi-Newton methods for nonlinear equations Adjoint Tangent Rank-1 updates Numerical results Conclusions and outlook
Outline
Quasi-Newton methods for nonlinear equations
Adjoint Tangent Rank-1 updates
Numerical results
Conclusions and outlook
nstitute of
cientific omputing
IS C
Quasi-Newton methods for nonlinear equations Adjoint Tangent Rank-1 updates Numerical results Conclusions and outlook
Nonlinear equation system
Problem
? F : Rn ? Rn differentiable
? x? ∈ Rn with F (x?) = 0
? F ′(x?) nonsingular, F ′ L-continuous in x? with constant L
Quasi-Newton method
for i = 0,1,2, . . .
? compute iterate xi+1 = xi ? A?1i F (xi)
? update Ai 7→ Ai+1
end
nstitute of
cientific omputing
IS C
Quasi-Newton methods for nonlinear equations Adjoint Tangent Rank-1 updates Numerical results Conclusions and outlook
Motivation
Choices for Ai
? Ai = F ′(xi) (Newton’s method)
+ local quadratic convergence
– Jacobian evaluation in each iteration
– linear algebra effort O(n3) per iteration
? Ai = A (constant iteration matrix)
– at most local linear convergence (except if A = F ′(x?))
+ no repeated Jacobian evaluation
+
显示全部