文档详情

关于勾股定理一些思考.doc

发布:2018-05-10约3.73千字共9页下载文档
文本预览下载声明
关于勾股定理一些思考   摘要:勾股定理是一条古老而又应用十分广泛的定理。在数学史上它的发现是伟大的!最早勾股定理应用是公元前11世纪,而现在勾股定理在数学中和生活中应用相当广泛,甚至用于宇宙探索。并且它在代数研究中取得了巨大的成就。在前人不懈的努力下我们对勾股定理有了一些教学建议。   关键词:勾股定理 应用 证明 代数      勾股定理指出:直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a2+b2=c2   1、数学史上的勾股定理   1.1勾股定理的来源   勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等於两条直角边边长平方之和。   1.2最早的勾股定理应用   中国最早的一部数学著作――《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边“勾”等于3,另一条直角边“股”等于4的时候,那么它的斜边“弦”就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方和。   1.3在代数研究上取得的成就   例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率。据说4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。公元1世纪,我国数学著作《九章算术》中记载了一种求整勾股数组的法则,用代数方法很容易证明这一结论。由此可见,你是否想到过,我们的祖先发现勾股定理,不是一蹴而就,而是经历了漫长的岁??,走过了一个由特殊到一般的过程。   2、勾股定理的一些运用   2.1在数学中的运用   勾股定理是极为重要的定理,其应用十分广泛.同学们在运用这个定理解题时,常出现这样或那样的错误。为帮助同学们掌握好勾股定理,现将平时容易出现的错误加以归类剖析,供参考。   2.1.1错在思维定势   例1一个直角三角形的两条边长分别是5和12,求第三条边的长。   错解:设第三条边的长为a,则由勾股定理,得a=52+122,即a=13,亦即第三条边的长是13。   剖析:由于受勾股定理数组5、12、13的影响,看到题设数据,一些同学便断定第三条边是斜边.实际上,题目并没有说明第三边是斜边还是直角边,故需分类求解。   正解:设第三条边的长为,(1)若第三边是斜边,同上可求得=13;(2)若第三边是直角边,则12必为斜边,由勾股定理,故第三条边的长是13或12.   2.2勾股定理在生活中的用   工程技术人员用的比较多,比如农村房屋的屋顶构造,就可以用勾股定理来计算,设计工程图纸也要用到勾股定理,在求与圆、三角形有关的数据时,多数可以用勾股定理物理上也有广泛应用,例如求几个力,或者物体的合速度,运动方向…古代也是大多应用于工程,例如修建房屋、修井、造车等等   农村盖房,木匠在方地基时就利用了勾股定理。木匠先是量出一个对边相等的四边形,这样就保证这个四边形是平行四边形,为了再使它是矩形,木匠就在临边上分别量出30公分、40公分的两段线段,然后再调整的另外两个断点间的距离使他们的距离成50公分即可。在这个过程中,木匠实际上即用到了平行四边形的判定、矩形的判定,又用到了勾股定理。   2.3宇宙探索   几十年前,有些科学家从天文望远镜中看到火星上有些地区的颜色有些季节性的变化,又看到火星上有运河模样的线条,于是就猜想火星上有高度智慧的生物存在。当时还没有宇宙飞船,怎样和这些智慧生物取得联系呢?有人就想到,中国、希腊、埃及处在地球的不同地区,但是他们都很早并且独立的发现了勾股定理。科学家们由此推想,如果火星上有具有智慧的生物的话,他们也许最早知道勾股定理。火星是否有高度智慧生物?现在已被基本否定,可是人类并没有打消与地球以外生物取得联系的努力,怎样跟他们联系呢?用文字和语言他们都不一定能懂。因此,我国已故著名数学家华罗庚曾建议:让宇宙飞船带着几个数学图形飞到宇宙空间,其中一个就是边长为3:4:5的直角三角形。两千年前发现的勾股定理,现在在探索宇宙奥秘的过程中仍然可以发挥作用。   看来,勾股定理不仅仅是数学问题,不仅仅是反映直角三角形三边关系,她已成为人类文明的象征,她
显示全部
相似文档