基于内容的自适应推荐系统研究-信息与通信工程专业论文.docx
文本预览下载声明
上海交通大学硕士论文
上海交通大学硕士论文
万方数据
万方数据
基于内容的自适应推荐系统研究
摘 要
随着互联网技术的迅猛发展,人们逐渐地从曾经的信息匮乏时代步 入了信息过载的时代。如何从海量信息里获取自己所需要的信息迅速 成为研究的热点。由于在信息过滤中的良好表现,推荐系统成为解决 信息过载问题有效方法,并产生了巨大的商业利润。由此推荐系统在 商业应用以及学术研究方面都有极大的研究价值。
在众多的推荐系统中,基于内容的推荐系统在文本推荐领域有着广 泛的应用。本文主要对内容推荐系统中初始模板的构建以及用户模板 的更新进行分析和研究,提出了一种应用于文本推荐的基于内容的自 适应推荐系统,以提高推荐的准确性及效率。
在建立初始用户模板方面,本文提出了一种基于 TextRank 算法建 立初始模板的方法,利用了用户提供信息中的集簇性。通过确定词义 项,聚类,建立图模型,引入各种影响力因子修正 TextRank 概率转移 矩阵等一系列操作,在只有少量数据的情况下,建立起一个精确的用 户模板,有效地提升了推荐精度。
在用户模板更新方面,本文在使用用户提供的新数据更新模板的同 时将信息检索中的伪相关反馈概念引入系统,更新用户模板。通过一 系列操作挑选最优反馈文档,筛选关键词,结合改进的 Rocchio 算法 更新模板,减少噪声引入,扩大了推荐范围,达到更好的推荐效果。 实验表明本文提出的基于内容自适应推荐系统有较好的推荐效果。
关键词:内容推荐算法,义项确定,TextRank,伪相关反馈,Rocchio
算法
I
THE RESEARCH OF ADAPTIVE RECOMMENDATION SYSTEM BASED ON CONTENT
ABSTRACT
With the rapid development of internet technology,people step into the era of information overload from an era of information scarcity gradually. How to get our required information from huge amounts of information in this era quickly became a research hotspot. Due to good performance in information filtering, recommendation system become an effective way to solve information overload problem and bring huge commercial profits. Therefore recommendation system has great research value not only in business application but also in academic research.
Among many kinds of recommendation system, recommendation
system based on content has been widely used in the field of text recommendation. This paper majors in the construction of the initial user profile and user profile updating in the process of recommendation in content recommendation system. The author puts forward an adaptive recommendation system based on content applied in text recommendation, in order to improve the accuracy and efficiency of recommendation.
In the respect of building initial user profile, this paper presents a method of building initial user profile based on TextRank which make full use of the character of cluster in users’ information. By taking a series of measures like
显示全部