文档详情

模式识别与智能计算第4章..doc

发布:2017-01-28约字共6页下载文档
文本预览下载声明
例4.4 function y=fuz_closing(x,y,type) n=length(x); switch type case 1 y=1-sum(abs(x-y))/n;  %海明贴近度 case 2 y=1-(sum(x-y).^2)^(1/2)/sqrt(n); %欧几里德贴近度 case 3 y1=max(min(fuzinv(x),fuzinv(y))); y2=max(min(x,y)); y=min(y1,y2);        %格贴近度 end 例4.5  function y=fuz_distance(x,type) [r,c]=size(x); for i=1:r for j=1:r switch type case 1 %欧氏距离 y(i,j)=0;for k=1:c; y(i,j)=y(i,j)+(x(i,k)-x(j,k))^2;end case 2   %数量积 if i==j y(i,j)=1; else y(i,j)=0;for k=1:c; y(i,j)=y(i,j)+x(i,k)*x(j,k);end end case 3 %相关系数 m=mean(x); a1=0;a2=0;a3=0; for k=1:c a1=a1+abs((x(i,k)-m(k)))*abs((x(j,k)-m(k)));a2=a2+sqrt((x(i,k)-m(k))^2); a3=a3+sqrt((x(j,k)-m(k))^2); y(i,j)=a1/(a2*a3); end case 4   %最大最小法 a1=0;a2=0; for k=1:c a1=a1+min(x(i,k),x(j,k));a2=a2+max(x(i,k),x(j,k));y(i,j)=a1/a2; end case 5  %几何平均法 a1=0;a2=0; for k=1:c a1=a1+min(x(i,k),x(j,k));a2=a2+sqrt(x(i,k)*x(j,k));y(i,j)=a1/a2; end case 6   %绝对指数法 y(i,j)=exp(-sum(abs(x(i,:)-x(j,:)))); case 7  %绝对值减数法 if i==j y(i,j)=1; else y(i,j)=1-0.1*sum(abs(x(i,:)-x(j,:)));  %0.1这个数值可以改变 end end end end for i=1:r;for j=1:r;a=max(max(y)); switch type case 1 y(i,j)=1-sqrt(y(i,j))/a; case 2 if i==j;continue;else;y(i,j)=y(i,j)/a;end end end end 例4.7 function y=NO_3mf(x,params) a =x_params(1); b =x_params(2); c =x_params(3); %a为二级标准值,b为三级标准值,c为四级标准值 y = zeros(size(x)); index = find(x==b);      % 当测量
显示全部
相似文档