基于8255的步进电机控制系统设计论文.doc
文本预览下载声明
微机原理与接口综合实验
PAGE
PAGE 5
实验设计
基于8255的步进电机控制系统设计
一、实验设计的目的与要求
通过步进电机控制系统实验设计,用8255扩展端口控制步进电机,编写程序输出脉冲序列到8255的PA口,控制步进电机正传,反转,加速,减速。进一步掌握微机原理与接口的理论和实际方法。培养和锻炼开发控制系统的能力。为今后单片机的学习与应用开发打下良好的基础。
要求了解步进电机控制的基本原理,掌握控制步进电机的转动的编程方法,进一步了解单片机控制外部设备的常用电路。
二、步进电机原理
1.步进电机的工作原理
该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。
图1 四相步进电机步进示意图
开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相 绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。
四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:
图2.步进电机工作时序波形图a. 单四拍????????????????????? b. 双四拍????????????????????c八拍
图2.步进电机工作时序波形图
2.步进电机的驱动原理
步进电动机是一种数字元件,易于数字电路接口,但一般数字电路的信号的能量远远不足以驱动步进电动机。因此,必须有一个与之匹配的驱动电路来驱动步进电动机。对步进电动机驱动一般有如下要求:
(1) 能够提供较快的电流上升和下降速度,使电流波形尽量接近矩形。
(2) 具有供截止期间释放电流流通的回路,以降低绕组两端的反电动势,加快电流衰减。
(3) 具有较高的功率及效率。步进电动机的驱动方式很多,如单极性驱动、双极性驱动、高低压驱动、斩波驱动、细分驱动、集成电路驱动等。
三、步进电机的控制
1. ULN2003
由于集成电路集驱动和保护于一体,作为小功率步进电动机的专用驱动芯片, ULN2003 是高耐压、大电流达林顿陈列,由七个硅NPN 达林顿管组成。 该电路的特点如下: ULN2003 的每一对达林顿都串联一个2.7K 的基极电阻,在5V 的工作电压下它能与TTL CMOS 电路 直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。 ULN2003 工作电压高,工作电流大,灌电流可达500mA,并且能够在关态时承受50V 的电压,输出还 可以在高负载电流并行运行。
ULN2003A在各种控制电路中常用它作为驱动继电器的芯片,其芯片内部做了一个消线圈反电动势的二极管。ULN2003的输出端允许通过IC 电流200mA,饱和压降VCE 约1V左右,耐压BVCEO 约为36V。输出电流大,故可以用来直接驱动步进电机。
项目
符号
数值
单位
最大输入电压
Vi(max)
30
V
集电极-发射极电压
Vo(max)
50
V
最大基极输入电流
IB(MAX)
25
mA
输出电流
Io
500
mA
贮存温度
Ts
-65~150
℃
结温
Tj
175
℃
引线耐焊接温度
TD
300
℃
2、脉冲的形成
实现对步进电机的控制,微机应能输出有一定周期的控制脉冲。
步骤是:先输出一个高电平,延时一段时间后,再输入一个低电平,然后再延时。改变延时时间的长
短,即可改变脉冲的周期,脉冲的周期由步进电机的工作频率确定。用软件形成环形脉冲的程序流程图
3、正反转控制
步进电机的旋转方向和内部绕组的通电顺序及通电方式有密切关系。通过改变各相脉冲的先后顺序,就可以改变电机的旋转方向.
4、转速控制
控制步进电机的运行速度,实际上是控制系统发出时钟脉冲的频率或换相的周期,即在升速过程中
显示全部