【2017年整理】D9_1基本概念.ppt
文本预览下载声明
目录 上页 下页 返回 结束 推广 第九章 一元函数微分学 多元函数微分学 注意: 善于类比, 区别异同 多元函数微分法 及其应用 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 第一节 一、区域 二、多元函数的概念 三、多元函数的极限 四、多元函数的连续性 多元函数的基本概念 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 一、 区域 1. 邻域 点集 称为点 P0 的? 邻域. 例如,在平面上, (圆邻域) 在空间中, (球邻域) 说明:若不需要强调邻域半径? ,也可写成 点 P0 的去心邻域记为 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 在讨论实际问题中也常使用方邻域, 平面上的方邻域为 。 因为方邻域与圆 邻域可以互相包含. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 2. 区域 (1) 内点、外点、边界点 设有点集 E 及一点 P : ? 若存在点 P 的某邻域 U(P)? E , ? 若存在点 P 的某邻域 U(P)∩ E = ? , ? 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E 则称 P 为 E 的内点; 则称 P 为 E 的外点 ; 则称 P 为 E 的边界点 . 的外点 , 显然, E 的内点必属于 E , E 的外点必不属于 E , E 的 边界点可能属于 E, 也可能不属于 E . Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. (2) 聚点 若对任意给定的? , 点P 的去心 邻域 内总有E 中的点 , 则 称 P 是 E 的聚点. 聚点可以属于 E , 也可以不属于 E (因为聚点可以为 所有聚点所成的点集成为 E 的导集 . E 的边界点 ) Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. D (3) 开区域及闭区域 ? 若点集 E 的点都是内点,则称 E 为开集; ? 若点集 E ??E , 则称 E 为闭集; ? 若集 D 中任意两点都可用一完全属于 D 的折线相连 , ? 开区域连同它的边界一起称为闭区域. 则称 D 是连通的 ; ? 连通的开集称为开区域 ,简称区域 ; 。 。 ? E 的边界点的全体称为 E 的边界, 记作?E ; Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 例如,在平面上 开区域 闭区域 ? ? ? ? Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. ? 整个平面 ? 点集 是开集, 是最大的开域 , 也是最大的闭域 ; 但非区域 . ? 对区域 D , 若存在正数 K , 使一切点 P?D 与某定点 A 的距离 ?AP?? K , 则称 D 为有界域 , 界域 . 否则称为无 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose P
显示全部