文档详情

[hough变换的圆检测.doc

发布:2017-01-08约5.34万字共63页下载文档
文本预览下载声明
基于HOUGH变换的图像检测 摘 要 自从20世纪80年代以来,研究者们提出了多种圆形检测的方法,基于hough变换的累积方法是主要的方法。基本的hough变换方法是将图像中的每一边缘点映射到参数空间的一个区域,选取累积最多的参数。在现实生活中,由于噪音、数字化错误和图形变异等因素真实的图形经常被曲解,因此,图像在应用hough变换后,很难找到单一的峰值,这也就造成了检测的难度。 本文讨论了当前的hough变换算法及其存在的一些问题,并在hough变换的原理基础上利用圆的几何特征提出了改进算法。重点介绍随机hough变换原理,将传统hough变换圆检测时的二维参量统计变成一维参量统计。理论和实验证明,本课题所研发的算法具有良好的检测性能,能获得较好的检测结果。 关键字:hough变换,传统hough变换,图像检测,边缘提取 Circle Detection Based on Improved Hough Transform ABSTRACT The detection of circle including camber is one of classical problems in digital image processing,and has extensive application background.Sinee1980s,researchers have provided many methods of circles detection. Hough transform is an important method. Classical Hough Transform transform edge of image to a region of parametric space,and select the most accumulated edges. In real-life images,the shapes are often distorted from their true parametric forms due to the presence of noise,digitization error and shape variations. Therefor,after apply Hough transform,it may be difficult to find out a single peak,thus it is difficult to detect image. In this paper,it discusses the current Hough transform algorithm and existing problems of the algorithm,and makes use of circle property to provide improved algorithm based on Hough transform. This paper emphasizes on introducing random Hough transform theory,takes three-dimensional parametric of the tradition Hough transform on detection of circle to one-dimensional statics of random Hough transform .Theories and experiments show that the paper presents an improved Hough transform algorithom,which has better detection performance and can get accurated result. KEYWORDSHough transform,tradition Hough transform ,image recongition , edge extraction 目 录 第1章 绪 论 1 1.1 课题研究意义 1 1.2 图像检测技术发展现状 2 1.3 本文研究的主要内容 3 1.3.1 数字图像预处理 3 1.3.2 Hough变换 4 第2章 图像预处理 6 2.1 图像灰度化 6 2.1.1 灰度图 6 2.1.2 图像灰度化 7 2.2 图像滤波 8 2.2.1 噪声 9 2.2.2 高斯噪声的滤波 10 2.2.3 椒盐噪声的滤波 12 2.2.4 基于多次中值抽取的图像双边滤波方法 15 2.3 实验结果与分析 16 第3章 图像分割 17 3
显示全部
相似文档