关于地球曲率大气折射对角高程测量误差分析.doc
文本预览下载声明
关于地球曲率、大气折射对三角高程测量误差分析
一、三角高程测量一般可以替代四等水准测量,也就是说它可以满足四等水准测量的精度要求!
二、当地形高低起伏太大,导致高差太大不便于水准测量,可以用三角高程测量原理测量两点间的高差和点位的高程;
三、误差来源:由于地球是一不规则椭圆,我们姑且把它看成一个半径为6371km的圆,我们来看一下水准面的定义:处处与铅垂线(重力线)垂直的连续封闭曲面;而我们假想的是用一个水平面代替水准面(这里大家要注意一下水准面与水平面的区别);受地球曲率影响,导致了一个误差的来源。所以我们在等级测量中需要计算一个地球曲率改正数对现场测量的高程加以修正。我们称其为球差改正f1=D2/2R(其实这公式也不难推导)
我们来个简单的几何分析:f1=根号下D2+R2-R
举例:0.5km误差达到20mm,则有f1=根号下0.52+63712-6771=20mm;
由上图我们可以看出,所实测点位的高程偏小,所以用全站仪单向观测时,计算高程时应加上球差改正f1;若进行对向或是中间观测时不必考虑球差改正;等精度观测可以抵消误差(导线测量要求边长大致相等);
大气折射对三角高程测量的影响:由于低层空气密度大于高层空气密度,观测竖直角的视线穿越不均匀的介质时,导致竖直角偏大或偏小。所有我们在计算高程时需要考虑大气折射的影响。f2(气差改正数)= -k*D2/2R(k为大气垂直折光系数)但水准测量几乎不受大气折射影响,因为水准测量提供的是一条水平的视线;但水准测量计算高程时需要考虑地球曲率的影响;
K一般取0.14,由于k受地区、气候、季节等诸多因数的影响,人们很难精确的测定k的值,正是这个原因,《城市测量规范》中规定测量边长不应大于1km。
综合以上:两者误差改正数f=f1+f2=(1-k)*D2/2R;
则有;计算高程时:hAB=S*sin+i-v+f(S为斜距、注意有正负之分)
hAB=D*tan+i-v+f(D为平距、注意有正负之分)
测量技巧:测量时采用对向观测时可以抵消f;中间观测法能抵消地球曲率影响,但不能抵消大气折射所带来的误差(理论上);
qq:425170631作(个人观点,如有问题,欢迎指教)
2014.1.17
显示全部